Skip to content

transform H&E image into CK image using GAN (virtual staining)

Notifications You must be signed in to change notification settings

YiyuHong/ck_virtual_staining_paper

Repository files navigation

Introduction

virtual staining

This repository is for virtual staining (transforming H&E image into CK (cytokeratin) image).

Requirement

  • python >= 3.6
    • numpy >=1.17.4
    • matplotlib >=3.1.1
    • opencv-python >= 4.1.2.30
    • openslide-python >= 1.1.2
    • pandas >= 1.1.3
    • scikit-image >= 0.15.0
    • scikit-learn >= 0.23.2
    • tifffile >= 2020.7.4
    • torch >= 1.5.1 (https://pytorch.org/)
    • torchvision >= 0.6.1
    • tqdm >= 4.50.2
  • openslide >= 3.4.1 (https://openslide.org/)

Usage

python run_ck_virtual_staining.py -input_path data/input/example.svs -output_dir data/output -model_checkpoint data/checkpoint/model.pth

Example Image

Input Output_CK Output_Segmentation (Tumor(red), Stroma(green))
./doc/S15-20845-3P-low_part0_HE.jpg ./doc/S15-20845-3P-low_part0_CK.jpg ./doc/S15-20845-3P-low_part0_ENV.jpg

Reference

Hong, Y., Heo, Y.J., Kim, B. et al. Deep learning-based virtual cytokeratin staining of gastric carcinomas to measure tumor–stroma ratio. Sci Rep 11, 19255 (2021). https://doi.org/10.1038/s41598-021-98857-1

About

transform H&E image into CK image using GAN (virtual staining)

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages