Skip to content

YiyuHong/CRC_LNM_Pred

Repository files navigation

CRC_LNM_Pred

Introduction

H&E whole slide images to predict metastasis of lymph node in T1 colorectal cancer using endoscopically resected specimens.

Notice: This repository is under construction, the full repository will be completed soon.

Requirement

  • python >= 3.6
    • numpy >=1.17.4
    • openslide-python >= 1.1.2
    • pandas >= 1.1.3
    • scikit-image >= 0.15.0
    • scikit-learn >= 0.23.2
    • torch >= 1.5.1 (https://pytorch.org/)
    • torchvision >= 0.6.1
  • openslide >= 3.4.1 (https://openslide.org/)

Usage

  • python make_image_list_dict.py
    • prepare training and test data
  • python train_patch_image.py
    • train patch-level image feature extractor
  • python test_patch_image.py
    • test patch-level image LNM prediction
  • python train_slide.py
    • train slide-level end-to-end LNM prediction model
  • python test_slide.py
    • test slide-level LNM prediction
  • python show_attention_map.py
    • show attention map of the predicted slide

Reference

"Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict metastasis of lymph node in T1 colorectal cancer using endoscopically resected specimens" -> paper is under review

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages