GeneralizedGenerated enables the generalised generated functions. More concretely, supports defining closures in generated functions.
Besides, some utility stuffs relevant to GeneralizedGenerated's implementation are exported,
which allows you to keep eval
and invokelastest
away from Julia
metaprogramming.
See an explanation here.
julia> module WorldAgeProblemRaisedHere!
do_this!(one_ary_fn_ast::Expr, arg) = begin
eval(one_ary_fn_ast)(arg)
end
res = do_this!(:(x -> x + 1), 2)
@info res
end
ERROR: MethodError: no method matching (::getfield(Main.WorldAgeProblemRaisedHere!, Symbol("##1#2")))(::Int64)
The applicable method may be too new: running in world age 26095, while current world is 26096.
julia> module WorldAgeProblemSolvedHere!
using GeneralizedGenerated
do_this!(one_ary_fn_ast::Expr, arg) = begin
runtime_eval(one_ary_fn_ast)(arg)
end
res = do_this!(:(x -> x + 1), 2)
@info res
end
[ Info: 3
Main.WorldAgeProblemSolvedHere!
using GeneralizedGenerated
@gg function f(x)
quote
a -> x + a
end
end
f(1)(2) # => 3
@gg function h(x, c)
quote
d = x + 10
function g(x, y=c)
x + y + d
end
end
end
h(1, 2)(1) # => 14
Note there're some restrictions to the generalized generated functions yet:
- Multiple dispatch is not allowed, and
f(x) = ...
is equivalent tof = x -> ...
. This will never gets supported for it needs a thorough implementation of multuple dispatch in GG. - Comprehensions for generated functions are not implemented yet. It won't cost a long time for being supported.
The evaluation module can be specified in this way:
julia> module S
run(y) = y + 1
end
Main.S
julia> @gg m function g(m::Module, y) :(run(y)) end
# the global variable `run` is from the module `m`
g (generic function with 1 method)
julia> g(S, 1)
2
Of course you can use structures to imitate modules:
julia> struct S
run :: Function
end
Main.S
julia> @gg m function g(m::S, y) :(run(y)) end
# the global variable `run` is from the datum `m`
g (generic function with 1 method)
julia> g(S(x -> x + 1), 1)
2
# do something almost equivalent to `eval`
# without introducing the world age problem!
using GeneralizedGenerated
f = mk_function(:((x, y) -> x + y))
f(1, 2)
# => 3
f = mk_function([:x, :y]#= args =#, []#= kwargs =#, :(x + y))
f(1, 2)
# => 3
module GoodGame
xxx = 10
end
# Specify global module
f = mk_function(GoodGame, :(function () xxx end))
f()
# => 10
The function created by mk_function
always has the signature f(args…; kwargs…) = ...
if you need to use the function in a context where it will be passed multiple arguments, use the following pattern
f = mk_function(:((x, y) -> x + y))
function F(g, pairs)
map(pairs) do (x,y)
g(x,y)
end
end
pairs = zip(1:10,2:11)
F((x,y)->f(x,y), pairs)
#=
=>
10-element Array{Int64,1}:
3
5
7
9
11
13
15
17
19
21
=#
Note, mk_function
just accepts a function-like AST, to eval more kinds of
ASTs, use runtime_eval
:
a = 0
runtime_eval(:(a + 1)) == 1 # true
module GoodGameOnceAgain
a = 2
end
runtime_eval(GoodGameOnceAgain, :(a + 3)) == 5