A 3D FCN with a top-down attention mechanism for segmenting extremely small brain structures, e.g., amygdala and its subnuclei.
If you find the code here useful, please cite our paper:
Liu Y, Nacewicz BM, Zhao G, Adluru N, Kirk GR, Ferrazzano PA, Styner MA and Alexander AL (2020) A 3D Fully Convolutional Neural Network With Top-Down Attention-Guided Refinement for Accurate and Robust Automatic Segmentation of Amygdala and Its Subnuclei. Front. Neurosci.14:260. doi: 10.3389/fnins.2020.00260
Python 2.7
PyTorch 0.4.1
numpy 1.14.5
(for Waisman users)
pip install torch==0.4.1 -f https://download.pytorch.org/whl/cu100/stable --user
pip install imgaug --user
pip install sklearn --user
pip install numpy -l
/study/utaut2/YL_AmygNet
Organize your folders as below:
Dataset/
Training/ Labels/ Validation/
Validation/
images/ labels/
Testing/
images/ labels/ (if available)
python train.py --sup_only True --data_path /path/to/Dataset --sourcefolder Training --labelfolder Labels --experiment_name XXX --num_classes XX --triple False --num_epochs XX
python val.py --val_path /path/to/Dataset/Validation --valimagefolder images --vallabelfolder labels --model Test --num_gpus 3 --num_classes XX
python test.py --num_classes XX --save_path XXX --model XXX --test_path /path/to/Testing/images --test_epoch N
python metric.py /path/to/outputs_tobe_evaluated /path/to/groundtruths Number_Of_Classes
- Yilin Liu
This project is licensed under the MIT License - see the LICENSE.md file for details