See our article for details:
Goffinet, J., Brudner, S., Mooney, R., & Pearson, J. (2021). Low-dimensional learned feature spaces quantify individual and group differences in vocal repertoires. eLife, 10:e67855. https://doi.org/10.7554/eLife.67855
See examples/
for usage.
See readthedocs for documentation and a tutorial.
$ git clone https://github.com/pearsonlab/autoencoded-vocal-analysis
$ cd autoencoded-vocal-analysis
$ pip install .
- Python3 (3.5+)
- PyTorch
- UMAP
- affinewarp
Issues and pull requests are appreciated!
- Animal Vocalization Generative Network, a nice repo by Tim Sainburg for clustering birdsong syllables and generating syllable interpolations.
- DeepSqueak and MUPET, MATLAB packages for detecting and classifying rodent ultrasonic vocalizations.
- Sound Analysis Pro, software for analyzing birdsong.