Skip to content

Commit

Permalink
hotfix (dmlc#971)
Browse files Browse the repository at this point in the history
  • Loading branch information
yzh119 authored Nov 4, 2019
1 parent 9a0511c commit fdd0fe6
Show file tree
Hide file tree
Showing 19 changed files with 64 additions and 46 deletions.
7 changes: 6 additions & 1 deletion examples/mxnet/monet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,11 @@ Dependencies
Results
=======

Node classification on citation networks:
## Citation networks
Run with following (available dataset: "cora", "citeseer", "pubmed")
```bash
python3 citation.py --dataset cora --gpu 0
```

- Cora: ~0.814
- Pubmed: ~0.748
8 changes: 7 additions & 1 deletion examples/mxnet/monet/citation.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,8 @@ def __init__(self,
out_feats,
n_layers,
dim,
n_kernels):
n_kernels,
dropout):
super(MoNet, self).__init__()
self.g = g
with self.name_scope():
Expand All @@ -39,9 +40,13 @@ def __init__(self,
self.layers.add(GMMConv(n_hidden, out_feats, dim, n_kernels))
self.pseudo_proj.add(nn.Dense(dim, in_units=2, activation='tanh'))

self.dropout = nn.Dropout(dropout)

def forward(self, feat, pseudo):
h = feat
for i in range(len(self.layers)):
if i > 0:
h = self.dropout(h)
h = self.layers[i](
self.g, h, self.pseudo_proj[i](pseudo))
return h
Expand Down Expand Up @@ -109,6 +114,7 @@ def main(args):
args.n_layers,
args.pseudo_dim,
args.n_kernels,
args.dropout
)
model.initialize(ctx=ctx)
n_train_samples = train_mask.sum().asscalar()
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/appnp/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,9 +43,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))

if args.gpu < 0:
cuda = False
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/cluster_gcn/cluster_gcn.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,9 +59,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()

n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()

print("""----Data statistics------'
#Edges %d
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/gat/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,9 +60,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))

if args.gpu < 0:
cuda = False
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/gcn/gcn_mp.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,9 +137,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))

if args.gpu < 0:
cuda = False
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/gcn/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,9 +44,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))

if args.gpu < 0:
cuda = False
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/graphsage/graphsage.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,9 +78,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))

if args.gpu < 0:
cuda = False
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/model_zoo/citation_network/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,9 +64,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))

if args.gpu < 0:
cuda = False
Expand Down
9 changes: 7 additions & 2 deletions examples/pytorch/monet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,14 @@ Dependencies
Results
=======

Node classification on citation networks:
## Citation networks
Run with following (available dataset: "cora", "citeseer", "pubmed")
```bash
python3 citation.py --dataset cora --gpu 0
```

- Cora: ~0.816
- Pubmed: ~0.763

Image classification on MNIST:
## Image classification:
- please refer to [model_zoo/geometric](../model_zoo/geometric).
6 changes: 3 additions & 3 deletions examples/pytorch/sampling/dis_sampling/gcn_cv_sc_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()

n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()

print("""----Data statistics------'
#Edges %d
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/sampling/dis_sampling/gcn_ns_sc_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()

n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()

print("""----Data statistics------'
#Edges %d
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/sampling/gcn_cv_sc.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,9 +161,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()

n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()

print("""----Data statistics------'
#Edges %d
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/sampling/gcn_ns_sc.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,9 +132,9 @@ def main(args):
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()

n_train_samples = train_mask.sum().item()
n_val_samples = val_mask.sum().item()
n_test_samples = test_mask.sum().item()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()

print("""----Data statistics------'
#Edges %d
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/sgc/sgc.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,9 +48,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))

if args.gpu < 0:
cuda = False
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/sgc/sgc_reddit.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,9 +51,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))

if args.gpu < 0:
cuda = False
Expand Down
6 changes: 3 additions & 3 deletions examples/pytorch/tagcn/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,9 +42,9 @@ def main(args):
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.sum().item(),
val_mask.sum().item(),
test_mask.sum().item()))
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))

if args.gpu < 0:
cuda = False
Expand Down
1 change: 1 addition & 0 deletions python/dgl/nn/mxnet/softmax.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,7 @@ def edge_softmax(graph, logits, eids=ALL):
<NDArray 6x1 @cpu(0)>
Apply edge softmax on first 4 edges of g:
>>> edge_softmax(g, edata, nd.array([0,1,2,3], dtype='int64'))
[[1. ]
[0.5]
Expand Down
1 change: 1 addition & 0 deletions python/dgl/nn/pytorch/softmax.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,7 @@ def edge_softmax(graph, logits, eids=ALL):
[0.3333]])
Apply edge softmax on first 4 edges of g:
>>> edge_softmax(g, edata[:4], th.Tensor([0,1,2,3]))
tensor([[1.0000],
[0.5000],
Expand Down

0 comments on commit fdd0fe6

Please sign in to comment.