Skip to content

Wu-Lab/SCARP_biorxiv

Repository files navigation


SCARP (Single-Cell ATAC-seq Analysis via Network Refinement with Peaks Location Information)


pipeline

Authors:

[email protected]

[email protected]

Usage:

Step1: Data Preprocessing

data = sc.read_h5ad(data_file_name)
data = sort_peaks(data)

Step2: Run SCARP

(1) parameter descriptions:

parameter name description type default
data input scATAC-seq data AnnData object None
m diffusion intensity of NR float 1.5
merge_thre threshold to merge adjacent chromosomes int 3000
beta control the extent to which prior edge weight decays float 1.5
return_shape shape of return matrix str 'CN'
peak_loc adding prior weight or not int True
parallel parallel computing or not int 0

(2) return:

parameter name description type
t running time float
diffusion_mat NR diffused matrix matrix

(3) running example:

t, diffusion_mat = SCARP(data = adata,
                         m = 1.5,
                         merge_thre = 3000,
                         beta = 5000,
                         return_shape = 'CN',
                         peak_loc = True,
                         parallel = 0)

Step3: Compute Embedding Dimension

running example:

k = std_plot(data = diffusion_mat,
             title = 'Kept component',
             max_k = 50,
             plot_std = True,
             save_file = 'Kept component.svg')

Directory structure:

├─Exp1_Benchmark                         
│  │  README.md
│  │  S01_Data_Preprocessing.ipynb
│  │  S02_Run_SCARP.ipynb  
│  ├─figures    
│  ├─Processed data
│  ├─Raw data         
│  └─Results
│          
├─Exp2_Robustness
│  │  S01_Filter_peaks.ipynb
│  │  S02_Run_SCARP.ipynb
│  ├─Processed data
│  └─Results
│          
├─Exp3_SNARE_seq
│  │  README.md
│  │  S01_Signac_vignette.R
│  │  S02_Run_SCARP.ipynb
│  │  S03_Cells_clustering.R
│  │  SNARE.Rproj
│  ├─Processed data
│  ├─Raw data        
│  └─Results
│          
├─Exp4_SOX10_Knockdown
│  │  Exp4_SOX10_Knockdown.Rproj
│  │  README.md
│  │  S01_Run_SCARP.ipynb
│  │  S02_Peak annotation.R
│  │  S03_Computing_coaccessible_peaks.ipynb
│  │  S04_Gene_Enrichment.R
│  │  S05_Survival_analysis.R
│  ├─figures    
│  ├─Processed data    
│  ├─Results        
│  ├─Survival result   
│  └─TCGA
│          
├─Exp5_10X_Multiome
│  │  help_func.py
│  │  README.md
│  │  S01_Data_Preprocessing.ipynb
│  │  S02_Run_SCARP_CD4naive.ipynb
│  │  S03_PCHIC_Enhancer_CD4naive.ipynb
│  │  S04_Chip_Seq.ipynb
│  │  S05_Differential_Analysis.ipynb 
│  ├─figures   
│  ├─Processed data  
│  ├─Raw data            
│  └─Results
│          
└─Scarp
    │  data_preprocessing.py
    │  downstream.py
    │  SCARP_help_func.py
    └─

Reproduce results

  1. Follow instructions in each subfile to prepare the necessary data.
  2. Run the code step by step.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published