Skip to content

Latest commit

 

History

History
 
 

onnxruntime

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

onnxruntime

CONTAINERS IMAGES RUN BUILD

CONTAINERS
onnxruntime:1.19
   Aliases onnxruntime
   Requires L4T ['>=36', '>=cu124']
   Dependencies build-essential cuda cudnn python tensorrt cmake numpy onnx
   Dependants efficientvit l4t-diffusion l4t-ml optimum piper-tts sam stable-diffusion-webui tam wyoming-piper:master
   Dockerfile Dockerfile
   Notes the onnxruntime-gpu wheel that's built is saved in the container under /opt
onnxruntime:1.19-builder
   Aliases onnxruntime:builder
   Requires L4T ['>=36', '>=cu124']
   Dependencies build-essential cuda cudnn python tensorrt cmake numpy onnx
   Dockerfile Dockerfile
   Notes the onnxruntime-gpu wheel that's built is saved in the container under /opt
onnxruntime:1.17
   Aliases onnxruntime
   Requires L4T ['>=36', '<=cu122']
   Dependencies build-essential cuda cudnn python tensorrt cmake numpy onnx
   Dockerfile Dockerfile
   Notes the onnxruntime-gpu wheel that's built is saved in the container under /opt
onnxruntime:1.17-builder
   Aliases onnxruntime:builder
   Requires L4T ['>=36', '<=cu122']
   Dependencies build-essential cuda cudnn python tensorrt cmake numpy onnx
   Dockerfile Dockerfile
   Notes the onnxruntime-gpu wheel that's built is saved in the container under /opt
onnxruntime:1.16.3
   Aliases onnxruntime
   Requires L4T ['==35.*']
   Dependencies build-essential cuda cudnn python tensorrt cmake numpy onnx
   Dockerfile Dockerfile
   Notes the onnxruntime-gpu wheel that's built is saved in the container under /opt
onnxruntime:1.16.3-builder
   Aliases onnxruntime:builder
   Requires L4T ['==35.*']
   Dependencies build-essential cuda cudnn python tensorrt cmake numpy onnx
   Dockerfile Dockerfile
   Notes the onnxruntime-gpu wheel that's built is saved in the container under /opt
onnxruntime:1.11
   Aliases onnxruntime
   Requires L4T ['==32.*']
   Dependencies build-essential cuda cudnn python tensorrt cmake numpy onnx
   Dockerfile Dockerfile
   Notes the onnxruntime-gpu wheel that's built is saved in the container under /opt
onnxruntime:1.11-builder
   Aliases onnxruntime:builder
   Requires L4T ['==32.*']
   Dependencies build-essential cuda cudnn python tensorrt cmake numpy onnx
   Dockerfile Dockerfile
   Notes the onnxruntime-gpu wheel that's built is saved in the container under /opt
CONTAINER IMAGES
Repository/Tag Date Arch Size
  dustynv/onnxruntime:r32.7.1 2023-12-11 arm64 0.5GB
  dustynv/onnxruntime:r35.2.1 2023-12-12 arm64 5.2GB
  dustynv/onnxruntime:r35.3.1 2023-11-13 arm64 5.2GB
  dustynv/onnxruntime:r35.4.1 2023-11-08 arm64 5.1GB
  dustynv/onnxruntime:r36.2.0 2023-12-12 arm64 6.9GB

Container images are compatible with other minor versions of JetPack/L4T:
    • L4T R32.7 containers can run on other versions of L4T R32.7 (JetPack 4.6+)
    • L4T R35.x containers can run on other versions of L4T R35.x (JetPack 5.1+)

RUN CONTAINER

To start the container, you can use jetson-containers run and autotag, or manually put together a docker run command:

# automatically pull or build a compatible container image
jetson-containers run $(autotag onnxruntime)

# or explicitly specify one of the container images above
jetson-containers run dustynv/onnxruntime:r36.2.0

# or if using 'docker run' (specify image and mounts/ect)
sudo docker run --runtime nvidia -it --rm --network=host dustynv/onnxruntime:r36.2.0

jetson-containers run forwards arguments to docker run with some defaults added (like --runtime nvidia, mounts a /data cache, and detects devices)
autotag finds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.

To mount your own directories into the container, use the -v or --volume flags:

jetson-containers run -v /path/on/host:/path/in/container $(autotag onnxruntime)

To launch the container running a command, as opposed to an interactive shell:

jetson-containers run $(autotag onnxruntime) my_app --abc xyz

You can pass any options to it that you would to docker run, and it'll print out the full command that it constructs before executing it.

BUILD CONTAINER

If you use autotag as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:

jetson-containers build onnxruntime

The dependencies from above will be built into the container, and it'll be tested during. Run it with --help for build options.