Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
Whysoserioushah committed Aug 20, 2024
1 parent 14632b4 commit e8a2813
Show file tree
Hide file tree
Showing 2 changed files with 0 additions and 18 deletions.
18 changes: 0 additions & 18 deletions BrauerGroup/GaloisSplit.lean
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,6 @@ lemma coe_b_as_K' (e : split K A K_bar := split_by_alg_closure K K_bar A) (i j :
(k : Fin (FiniteDimensional.finrank K A)) :
(b_as_K' (e := e) i j k : K_bar) = b e i j k := rfl


open IntermediateField in
instance (e : split K A K_bar := split_by_alg_closure K K_bar A) :
FiniteDimensional K (K' K K_bar A e) := by
Expand All @@ -69,14 +68,10 @@ instance (e : split K A K_bar := split_by_alg_closure K K_bar A) :
exact Algebra.IsIntegral.isIntegral i
apply finiteDimensional_iSup_of_finset


-- local notation "K'" => K' K K_bar A

set_option synthInstance.maxHeartbeats 60000 in
instance (e : split K A K_bar) :
Algebra ((K' K K_bar A e)) ((K' K K_bar A e) ⊗[K] A.carrier) := inferInstance


set_option synthInstance.maxHeartbeats 60000 in
instance (e : split K A K_bar) :
Module ((K' K K_bar A e)) ((K' K K_bar A e) ⊗[K] A.carrier) := inferInstance
Expand All @@ -85,7 +80,6 @@ set_option synthInstance.maxHeartbeats 60000 in
instance (e : split K A K_bar) :
DistribSMul ((K' K K_bar A e)) ((K' K K_bar A e) ⊗[K] A.carrier) := inferInstance


private def emb (e : split K A K_bar := split_by_alg_closure K K_bar A) :
K' K K_bar A e ⊗[K] A →ₐ[K' K K_bar A e] K_bar ⊗[K] A :=
Algebra.TensorProduct.map (Algebra.ofId (K' (e := e)) _) (AlgHom.id _ _)
Expand All @@ -97,8 +91,6 @@ private lemma emb_tmul (e : split K A K_bar := split_by_alg_closure K K_bar A) :
simp only [emb, Algebra.TensorProduct.map_tmul, AlgHom.coe_id, id_eq]
rfl

-- set_option synthInstance.maxHeartbeats 60000 in

lemma basis'_li (e) : LinearIndependent ↥(K' K K_bar A e) fun i : Fin e.n × Fin e.n ↦
∑ j : Fin (FiniteDimensional.finrank K A.carrier),
b_as_K' K K_bar A e i.1 i.2 j ⊗ₜ[K] (FiniteDimensional.finBasis K A.carrier) j := by
Expand Down Expand Up @@ -151,7 +143,6 @@ def e'Aux (e : split K A K_bar := split_by_alg_closure K K_bar A) :
Matrix (Fin e.n) (Fin e.n) (K' K K_bar A e) :=
Basis.equiv (b := basis' (e := e)) (b' := Matrix.stdBasis (K' K K_bar A e) (Fin e.n) (Fin e.n)) $
Equiv.refl _
-- Algebra.TensorProduct.equiv K (K' K K_bar A e) A

lemma e'Aux_apply_basis (e : split K A K_bar := split_by_alg_closure K K_bar A)
(i j : Fin e.n) :
Expand All @@ -165,7 +156,6 @@ lemma e'Aux_apply_basis (e : split K A K_bar := split_by_alg_closure K K_bar A)
ext
simp only [Equiv.refl_apply, Matrix.stdBasis_eq_stdBasisMatrix, Matrix.stdBasisMatrix]


def emb' (e : split K A K_bar := split_by_alg_closure K K_bar A):
Matrix (Fin e.n) (Fin e.n) (K' K K_bar A e) →ₐ[K' K K_bar A e]
Matrix (Fin e.n) (Fin e.n) K_bar :=
Expand All @@ -181,10 +171,6 @@ lemma emb'_inj (e : split K A K_bar := split_by_alg_closure K K_bar A):
IntermediateField.algebraMap_apply, SetLike.coe_eq_coe] at h ⊢
exact h

-- def embemb (e : split K A K_bar := split_by_alg_closure K K_bar A) :
-- (K' K K_bar A e) ⊗[K] A →ₐ[K' K K_bar A e] K_bar ⊗[K] A :=
-- Algebra.TensorProduct.map (Algebra.ofId (K' (e := e)) _) (AlgHom.id _ _)

set_option synthInstance.maxHeartbeats 60000 in
instance (e) : NonUnitalNonAssocSemiring (↥(K' K K_bar A e) ⊗[K] A.carrier) := inferInstance

Expand Down Expand Up @@ -224,7 +210,6 @@ lemma e'_map_mul (e : split K A K_bar := split_by_alg_closure K K_bar A)
rw [← eq, (emb (e := e)).map_mul, _root_.map_mul (f := e.iso), (emb' (e := e)).map_mul,
← eqx, ← eqy]


lemma e'_map_one (e : split K A K_bar := split_by_alg_closure K K_bar A) :
(e'Aux K K_bar A e) 1 = 1 := by
have eq := congr($(emb_comm_square (e := e)) 1)
Expand All @@ -233,12 +218,9 @@ lemma e'_map_one (e : split K A K_bar := split_by_alg_closure K K_bar A) :
AlgHom.toLinearMap_apply, AlgEquiv.toLinearMap_apply, LinearEquiv.coe_coe] at eq
rw [← eq, (emb (e := e)).map_one, _root_.map_one (f := e.iso), (emb' (e := e)).map_one]



def e' (e : split K A K_bar := split_by_alg_closure K K_bar A) :
(K' K K_bar A e) ⊗[K] A ≃ₐ[K' K K_bar A e]
Matrix (Fin e.n) (Fin e.n) (K' K K_bar A e) :=
AlgEquiv.ofLinearEquiv (e'Aux (e := e)) (e'_map_one (e := e)) (e'_map_mul (e := e))


end one
Empty file added BrauerGroup/Subfield.lean
Empty file.

0 comments on commit e8a2813

Please sign in to comment.