Skip to content

Commit

Permalink
check the statement?
Browse files Browse the repository at this point in the history
  • Loading branch information
Whysoserioushah committed Jul 27, 2024
1 parent df0484a commit c0c1e5f
Showing 1 changed file with 11 additions and 7 deletions.
18 changes: 11 additions & 7 deletions BrauerGroup/SplittingOfCSA.lean
Original file line number Diff line number Diff line change
Expand Up @@ -242,11 +242,10 @@ def deg (A : CSA k): ℕ := dim_is_sq k A k_bar A.is_central_simple|>.choose
lemma deg_sq_eq_dim (A : CSA k): (deg k k_bar A) ^ 2 = FiniteDimensional.finrank k A :=
by rw [pow_two]; exact dim_is_sq k A k_bar A.is_central_simple|>.choose_spec.symm

lemma deg_pos (A : CSA k): 0 < deg k k_bar A := by
lemma deg_pos (A : CSA k): deg k k_bar A0 := by
by_contra! h
have eq_zero : deg k k_bar A = 0 := by omega
apply_fun (λ x => x^2) at eq_zero
rw [deg_sq_eq_dim k k_bar A, pow_two, mul_zero] at eq_zero
apply_fun (λ x => x^2) at h
rw [deg_sq_eq_dim k k_bar A, pow_two, mul_zero] at h
haveI := A.is_central_simple.is_simple.1
have Nontriv : Nontrivial A := inferInstance
have := FiniteDimensional.finrank_pos_iff (R := k) (M := A)|>.2 Nontriv
Expand All @@ -256,6 +255,10 @@ structure split (A : CSA k) (K : Type*) [Field K] [Algebra k K] :=
(n : ℕ) (hn : n ≠ 0)
(iso : K ⊗[k] A ≃ₐ[K] Matrix (Fin n) (Fin n) K)

def isSplit : Prop :=
∃(n : ℕ)(L : Type u)(_ : n ≠ 0)(_ : Field L)(_ : Algebra k L),
Nonempty (L ⊗[k] A ≃ₐ[L] Matrix (Fin n) (Fin n) L)

def split_by_alg_closure (A : CSA k): split k A k_bar where
n := deg k k_bar A
hn := by haveI := deg_pos k k_bar A; omega
Expand Down Expand Up @@ -323,7 +326,8 @@ def extension_over_split (A : CSA k) (L L': Type u) [Field L] [Field L'] [Algebr
exact Nat.mul_self_inj.mp (id (this.trans e6).symm)
exact (e3.trans e4).trans $ Matrix.reindexAlgEquiv L' (finCongr e5)

theorem exist_sep_over_CSA (A : CSA k): ∃(L : Type u)(_ : Field L)(_ : Algebra k L)
(split : split k A L), Algebra.IsSeparable k L := by
-- use
theorem exist_sep_over_CSA (A : CSA k): ∃(L : Type u)(_: Field L)(_ : Algebra k L),
isSplit k A ∧ Algebra.IsSeparable k L := by
refine ⟨k_s, _, _,
⟨⟨deg k k_bar A, k_s, deg_pos k k_bar A, _, inferInstance, ⟨?_⟩⟩, inferInstance⟩⟩
sorry

0 comments on commit c0c1e5f

Please sign in to comment.