Skip to content

Commit

Permalink
BrauerGroup/SplittingOfCSA.lean
Browse files Browse the repository at this point in the history
  • Loading branch information
ahhwuhu committed Jul 24, 2024
1 parent bd3a8eb commit 870d69c
Showing 1 changed file with 23 additions and 2 deletions.
25 changes: 23 additions & 2 deletions BrauerGroup/SplittingOfCSA.lean
Original file line number Diff line number Diff line change
Expand Up @@ -18,14 +18,35 @@ open RingCon
instance module_over_over (A : CSA k) (I : RingCon A):
Module k I := Module.compHom I (algebraMap k A)

lemma one_tensor_bot_RingCon [FiniteDimensional k K] {x : A} (Is_CSA : IsCentralSimple K (K ⊗[k] A))
lemma one_tensor_bot_RingCon [FiniteDimensional k K] {x : A} (_ : IsCentralSimple K (K ⊗[k] A))
(h : 1 ⊗ₜ[k] x ∈ (⊥ : RingCon (K ⊗[k] A))) :
x ∈ (⊥ : RingCon A) := by
sorry
let h1 : k ⊗[k] A ≃ₐ[k] A := Algebra.TensorProduct.lid _ _
let h2 : k →ₗ[k] K := {
toFun := algebraMap k K
map_add' := by simp only [map_add, implies_true]
map_smul' := by intro x y; simp only [smul_eq_mul, map_mul, RingHom.id_apply, Algebra.smul_def]
}
have h4 : Function.Injective (LinearMap.rTensor A h2) := by
apply Module.Flat.rTensor_preserves_injective_linearMap
simp only [LinearMap.coe_mk, AddHom.coe_mk, h2]
exact Basis.algebraMap_injective (FiniteDimensional.finBasis k K)
suffices x = 0 by tauto
suffices (1 : k) ⊗ₜ[k] x = 0 by
obtain h := map_zero h1
rw [← this, Algebra.TensorProduct.lid_tmul, Algebra.smul_def] at h
simp_all
suffices (algebraMap k K) 1 ⊗ₜ[k] x = 0 by
have h : (LinearMap.rTensor A h2) (1 ⊗ₜ[k] x) = (algebraMap k K) 1 ⊗ₜ[k] x := by tauto
rw [this, show 0 = (LinearMap.rTensor A h2) 0 by simp ] at h
tauto
simp; tauto

lemma one_tensor_bot_Algebra [FiniteDimensional k K] {x : A} (Is_CSA : IsCentralSimple K (K ⊗[k] A))
(h : 1 ⊗ₜ[k] x ∈ (⊥ : Subalgebra K (K ⊗[k] A))) :
x ∈ (⊥ : Subalgebra k A) := by
rw [Algebra.mem_bot] at h ⊢
simp only [Set.mem_range, Algebra.id.map_eq_id, RingHom.id_apply] at h ⊢
sorry

theorem centralsimple_over_extension_iff [FiniteDimensional k K]:
Expand Down

0 comments on commit 870d69c

Please sign in to comment.