Skip to content

Commit

Permalink
a bit more
Browse files Browse the repository at this point in the history
  • Loading branch information
jjaassoonn committed Nov 30, 2024
1 parent d25419c commit 3e81c75
Show file tree
Hide file tree
Showing 3 changed files with 52 additions and 3 deletions.
9 changes: 9 additions & 0 deletions BrauerGroup/ToSecond.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1140,6 +1140,15 @@ lemma identity_double_cross (b : K) :
rw [a_one_left ha]
simp

lemma identity_double_cross' (b c : K) :
ι ha b * ⟨Pi.single σ c⟩ = ⟨Pi.single σ (b*c)⟩ := by
ext α
simp only [mul_val, ι_apply_val, Prod.mk_one_one, Units.val_inv_eq_inv_val,
crossProductMul_single_single, AlgEquiv.one_apply]
rw [_root_.one_mul]
congr 1
rw [a_one_left ha]
field_simp

@[simps]
def Units.ofLeftRightInverse (G : Type*) [Monoid G] (a b c : G) (h : a * b = 1) (h' : c * a = 1) : Gˣ where
Expand Down
44 changes: 42 additions & 2 deletions blueprint/src/content/brauer-group.tex
Original file line number Diff line number Diff line change
Expand Up @@ -702,7 +702,7 @@ \subsection{From $\HH^{2}\left(\gal(K/F), K^{\star}\right)$ to $\br(K/F)$}
Let $\mathfrak{a} \in \mathcal{B}^{2}\left(\gal(K/F), K^{\star}\right)$ be any 2-cocycle. In this section, we construct the {\em cross product\/} associated with $\mathfrak{a}$ which we prove to be $F$-central simple. Finally, we show that if $\mathfrak{a}, \mathfrak{b}\in\mathcal{B}^{2}\left(\gal(K/F), K^{\star}\right)$ are cohomologous, the cross products associated with $a$ and $b$ are Brauer equivalent.

\begin{construction}[Cross product]\label{con:cross-product}
Denote $\cross_{\mathfrak{a}}$ to $\gal(K/F) \to K$, i.e. functions from $\gal(K/F)$ to $K$. Notationally, elements of $\cross_{\mathfrak{a}}$ are sequences in $K$ indexed by $\gal(K/F)$; we denote $\Delta_{\sigma, c}$ to be the sequence with value $c$ at $\sigma$-th index and zero elsewhere. We give $\cross_{\mathfrak{a}}$ the usual zero, addition, negation, that is, we give $\cross_{\mathfrak{a}}$ the normal additive abelian group structure. Since for each $c \in \cross_{\mathfrak{a}}$,
Denote $\cross_{\mathfrak{a}}$ to be $\gal(K/F) \to K$, i.e. functions from $\gal(K/F)$ to $K$. Notationally, elements of $\cross_{\mathfrak{a}}$ are sequences in $K$ indexed by $\gal(K/F)$; we denote $\Delta_{\sigma, c}$ to be the sequence with value $c$ at $\sigma$-th index and zero elsewhere. We give $\cross_{\mathfrak{a}}$ the usual zero, addition, negation, that is, we give $\cross_{\mathfrak{a}}$ the normal additive abelian group structure. Since for each $c \in \cross_{\mathfrak{a}}$,
\[
c = \sum_{\sigma\in\gal(K/F)}\Delta_{\sigma, c(\sigma)},
\]
Expand Down Expand Up @@ -755,10 +755,50 @@ \subsection{From $\HH^{2}\left(\gal(K/F), K^{\star}\right)$ to $\br(K/F)$}
&=\Delta_{\sigma, a}
\end{aligned}
\]
\item distributivity: ...
\item distributivity: We need to check left-distributivity $\Delta_{\sigma, a}\left(\Delta_{\tau, b} + \Delta_{\rho, c}\right) = \Delta_{\sigma,a}\Delta_{\tau,b} + \Delta_{\sigma, a}\Delta_{\rho, c}$ and right distributivity $\left(\Delta_{\tau,b} + \Delta_{\rho,c}\right)\Delta_{\sigma,a} = \Delta_{\tau,b}\Delta_{\sigma,a} + \Delta_{\rho,c}\Delta_{\sigma,a}$. This is precisely what ``extend linearly'' means.
\item $F$-algebra: We need to check for all $r \in F$, $\left(r\cdot \Delta_{\id,\mfa(\id,\id)^{-1}}\right)\Delta_{\sigma,c} = \Delta_{\sigma,c}\left(r\cdot\Delta_{\id,\mfa(\id,\id)^{-1}}\right)$. By~\cref{lem:2-cocycle-one-one}
\[
\begin{aligned}
\left(r\cdot \Delta_{\id,\mfa(\id,\id)^{-1}}\right)\Delta_{\sigma,c}
&= \Delta_{\id,r\cdot\mfa(\id,\id)^{-1}}\Delta_{\sigma,c}\\
&= \Delta_{\sigma,\left(r\cdot\mfa(\id,\id)^{-1}\right)c\mfa(\id,\sigma)} \\
&=\Delta_{\sigma,\left(r\cdot\mfa(\id,\id)^{-1}\right)c\mfa(\id,\id)} \\
&= \Delta_{\sigma, r\cdot c}\\
%
\Delta_{\sigma,c}\left(r\cdot\Delta_{\id,\mfa(\id,\id)^{-1}}\right)
&= \Delta_{\sigma,c}\Delta_{\id,r\cdot \mfa(\id,\id)^{-1}} \\
&= \Delta_{\sigma,c\sigma\left(r\cdot\mfa(\id,\id)^{-1}\right)\mfa(\sigma,\id)}\\
&=\Delta_{\sigma,c\left(r\cdot\sigma\left(\mfa(\id,\id)^{-1}\right)\right)\mfa(\id,\id)^{-1}}\\
&= \Delta_{\sigma, c\left(r\cdot 1\right)}\\
&=\Delta_{\sigma,r\cdot c}.
\end{aligned}
\]
\end{itemize}
\end{proof}

From now on, we feel free to write $1 \in \cross_{\mfa}$ instead of $\Delta_{\id,\mfa(\id,\id)^{-1}}$. Then the algebra map $F \hookrightarrow \cross_{\mfa}$ is the map $r \mapsto r \cdot 1$.

\begin{construction}[$K$-embedding]\label{con:cross-product-iota}
The map $\iota_{\cross_{\mfa}}: K \to \cross_{\mfa}$ defined by
\[
b \mapsto \Delta_{\id, b\mfa(\id,\id)^{-1}}
\]
is an $F$-algebra map.
Checking that $\iota_{\cross_{\mfa}}$ preserves $1$, multiplication and addition uses nothing but axioms of ring.
For any $r \in F$, we need to check $\iota_{\corss_{\mfa}}(r) = r \cdot 1$. Indeed $\iota_{\cross_{\mfa}}(r) = \Delta_{\id, r\cdot \mfa(\id,\id)^{-1}}$ and $r\cdot 1 = r \cdot \Delta_{\id,\mfa(\id,\id)^{-1}} =\Delta_{\id,r\cdot\mfa(\id,\id)^{-1}}$.
When the context is clear, we also write $\iota_{\mfa}$ instead of $\iota_{\cross_{\mfa}}$.

We note the following useful equality: for any $b \in K$

\[
\iota_{\mfa}(b)\Delta_{\sigma, c} = \Delta_{\sigma, bc},
\]
indeed:
$\iota_{\mfa}(b)\Delta_{\sigma, c} = \Delta_{\id,b \mfa(\id,\id)^{-1}}\Delta_{\sigma, c} = \Delta_{\sigma, b\mfa(\id,\id)^{-1}c\mfa(\id,\sigma)} = \Delta_{\sigma,b\mfa(\id,\id)^{-1}c\mfa(\id,\id)}$ by~\cref{lem:2-cocycle-one-one}.
\leanok
\lean{GoodRep.CrossProduct.ι,GoodRep.CrossProduct.identity_double_cross'}
\end{construction}

%%% Local Variables:
%%% mode: LaTeX
%%% TeX-master: "../print"
Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/macros/common.tex
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@

\newcommand{\mfa}{\mathfrak{a}}

\DeclareMathOperator{\cross}{Cross}
\DeclareMathOperator{\cross}{\mathfrak{C}}

\newcommand{\nat}{\mathbb{N}}
%%% Local Variables:
Expand Down

0 comments on commit 3e81c75

Please sign in to comment.