Skip to content

Commit

Permalink
Redirect to new website.
Browse files Browse the repository at this point in the history
  • Loading branch information
Eibe Frank committed Jun 27, 2024
1 parent f9188a4 commit b3371e2
Showing 1 changed file with 1 addition and 207 deletions.
208 changes: 1 addition & 207 deletions index.html
Original file line number Diff line number Diff line change
@@ -1,207 +1 @@
<!DOCTYPE HTML>
<!--
Miniport by HTML5 UP
html5up.net | @ajlkn
Free for personal and commercial use under the CCA 3.0 license (html5up.net/license)
-->
<html>
<head>
<title>Weka 3 - Data Mining with Open Source Machine Learning Software in Java </title>
<meta charset="utf-8" />
<link rel="shortcut icon" href="favicon.ico" />
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
<link rel="stylesheet" href="https://waikato.github.io/weka-site/assets/css/main.css" />
</head>

<body class="is-preload">

<!-- Nav -->
<nav id="nav">
<ul class="container">
<li><a href="./index.html">Weka</a></li>
<li><a href="./book.html">Book</a></li>
<li><a href="./courses.html">Courses</a></li>
<li><a href="https://waikato.github.io/weka-blog/">Blog</a></li>
<li><a href="https://waikato.github.io/weka-wiki/">Wiki</a></li>
</ul>
</nav>

<!-- Home -->
<article id="top" class="wrapper style1">
<div class="container">
<div class="row">
<div class="col-4 col-5-large col-12-medium">
<span class="image fit"><img src="https://waikato.github.io/weka-site/images/weka.png" alt="" /></span>
</div>
<div class="col-8 col-7-large col-12-medium">
<header>
<h1><strong>WEKA</strong></h1>
<H2>The workbench for machine learning</h2>
</header>
<p>Weka is tried and tested open source machine learning software that can be accessed through a graphical user interface, standard terminal applications, or a Java API. It is widely used for teaching, research, and industrial applications, contains a plethora of built-in tools for standard machine learning tasks, and additionally gives transparent access to well-known toolboxes such as <a href="https://markahall.blogspot.co.nz/2015/06/cpython-integration-in-weka.html" target="_blank">scikit-learn</a>, <a href="https://markahall.blogspot.com/2012/07/r-integration-in-weka.html" target="_blank">R</a>, and <a href="https://deeplearning.cms.waikato.ac.nz" target="_blank">Deeplearning4j</a>.

</p>
<a href="https://waikato.github.io/weka-wiki/downloading_weka/" class="button">Download and install</a>
<a href="https://waikato.github.io/weka-wiki/documentation" class="button scrolly">Docs</a>
<a href="./courses.html" class="button scrolly">Courses</a>
<a href="./book.html" class="button scrolly">Book</a>
</div>
</div>
</div>
</article>


<!-- Home -->
<article id="top" class="wrapper style3">
<div class="container">
<div class="row">
<div class="col-4 col-5-large col-12-medium">
<span class="image fit"><img src="https://waikato.github.io/weka-site/images/weka.png" alt="" /></span>
</div>
<div class="col-8 col-7-large col-12-medium">
<header>
<h1 name="GetStart" id="GetStart">Getting Started</h1>
</header>
<div class="videoWrapper">
<iframe width="560" height="315" src="https://www.youtube.com/embed/TF1yh5PKaqI" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<p>Video from <a href="https://twitter.com/random_forests">Josh Gordon</a>, Developer Advocate for @GoogleAI.</p>
</div>
</div>
</div>
</div>
</article>

<!-- Portfolio -->
<article id="portfolio" class="wrapper style1">
<div class="container">
<header>
<h2 name="learn" id ="learn" >Machine Learning without Programming</h2>
<p>Weka can be used to build machine learning pipelines, train classifiers, and run evaluations without having to write a single line of code:</p>

</header>
<div class="row">
<div class="col-4 col-6-medium col-12-small">
<article class="box style2">
<span class="image fit"><img src="https://waikato.github.io/weka-site/images/Explorer-1.png" alt=""/></span>
<h3>Open a dataset</h3>
<p>First, we open the <a href="https://waikato.github.io/weka-wiki/datasets/" target="_blank">dataset</a> that we would like to evaluate.</p>
</article>
</div>
<div class="col-4 col-6-medium col-12-small">
<article class="box style2">
<span class="image fit"><img src="https://waikato.github.io/weka-site/images/Explorer-2.png" alt=""/></span>
<h3>Choose a classifier</h3>
<p> Second, we select a learning algorithm to use, e.g., the J48 classifier, which learns decision trees.</p>
</article>
</div>
<div class="col-4 col-6-medium col-12-small">
<article class="box style2">
<span class="image fit"><img src="https://waikato.github.io/weka-site/images/Explorer-3.png" alt="" /></span>
<h3>Evaluate predictive accuracy</h3>
<p>Finally, we run a 10-fold cross-validation evaluation and obtain an estimate of predictive performance.</p>
</article>
</div>

<footer>
<p>Note that programmers can also easily implement this pipeline using Weka's Java API:</p>
<p>
<iframe
src="https://carbon.now.sh/embed/?bg=rgba(171%2C%20184%2C%20195%2C%201)&t=seti&wt=sharp&l=text%2Fx-java&ds=true&dsyoff=20px&dsblur=68px&wc=true&wa=true&pv=0px&ph=0px&ln=false&fm=Hack&fs=18px&lh=139%25&si=false&es=4x&wm=false&code=DataSource%2520source%2520%253D%2520new%2520DataSource(%2522%252Fsome%252Fwhere%252Fdata.arff%2522)%253B%250AInstances%2520data%2520%253D%2520source.getDataSet()%253B%250A%250AJ48%2520tree%2520%253D%2520new%2520J48()%253B%250AEvaluation%2520eval%2520%253D%2520new%2520Evaluation(data)%253B%250Aeval.crossValidateModel(tree%252C%2520data%252C%252010%252C%2520new%2520Random(1))%253B"
style="transform:scale(1.1); width:1024px; height:323px; border:0; overflow:hidden;"
sandbox="allow-scripts allow-same-origin">
</iframe>
</p>
</footer>
</div>
</article>

<!-- Home -->
<article id="top" class="wrapper style3">
<div class="container">
<div class="row">
<div class="col-4 col-5-large col-12-medium">
<p></p>
<span><img name="deep learning" alt="Deep Learning with Weka" width="100%" src="https://waikato.github.io/weka-site/images/deeplearning.jpg" /></span>
</div>
<div class="col-8 col-7-large col-12-medium">
<header>
<h1>Deep Learning with WEKA </h1>
</header>
<p><a href="https://deeplearning.cms.waikato.ac.nz">WekaDeeplearning4j</a> is a deep learning package for Weka. Deep neural networks, including convolutional networks and recurrent networks, can be trained directly from Weka's graphical user interfaces, providing state-of-the-art methods for tasks such as image and text classification.</p>


<a href="https://deeplearning.cms.waikato.ac.nz" class="button">WekaDeeplearning4j</a>

</div>

</div>
</div>
</article>



<!-- Work -->
<article id="work" class="wrapper style1">
<div class="container">
<header>
<h2>WEKA Interoperability</h2>
<p>WEKA can be integrated with the most popular data science tools.</p>
</header>
<div class="row aln-center">
<div class="col-4 col-6-medium col-12-small">
<section class="box style1">
<a href="#" class="image featured"><img src="https://waikato.github.io/weka-site/images/R.png" height="200" alt="" /></a>
<h3>R</h3>
<p>Weka models can be used, built, and evaluated in <a href="https://www.r-project.org/" target="_blank">R</a> by using the <a href="https://www.rdocumentation.org/packages/RWeka/" target="_blank">RWeka</a> package for R; conversely, R algorithms and visualization tools can be invoked from Weka using the <a href="https://markahall.blogspot.co.nz/2012/07/r-integration-in-weka.html" target="_blank">RPlugin</a> package for Weka.</p>
</section>
</div>
<div class="col-4 col-6-medium col-12-small">
<section class="box style1">
<a href="#" class="image featured"><img src="https://waikato.github.io/weka-site/images/python.png" height="100" alt="" /></a>
<h3>Python</h3>
<p>Weka's functionality can be accessed from Python using the <a href="https://github.com/fracpete/python-weka-wrapper3" target="_blank">Python Weka Wrapper</a>. Conversely, Python toolkits such as scikit-learn <a href="https://markahall.blogspot.co.nz/2015/06/cpython-integration-in-weka.html" target="_blank">can be used from Weka</a>.</p>
</section>
</div>
<div class="col-4 col-6-medium col-12-small">
<section class="box style1">
<a href="#" class="image featured"><img src="https://waikato.github.io/weka-site/images/spark.png" height="150" alt="" /></a>
<h3>Spark</h3>
<p>For running Weka-based algorithms on truly large datasets, the <a href="https://markahall.blogspot.com/2015/03/weka-and-spark.html" target="_blank">distributed Weka for Spark
package</a> is available. It makes it possible to train
any Weka classifier in Spark, for example. </p>
</section>
</div>
</div>
</div>
</article>

<!-- Contact -->
<article id="contact" class="wrapper style4">
<div class="container medium">
<header>
Weka is proudly brought to you by the <a href="https://www.cs.waikato.ac.nz/ml/index.html" target="_blank">Machine Learning Group</a> at the <a href="https://waikato.ac.nz" target="_blank">University of Waikato.
</header>
<a href="https://www.cs.waikato.ac.nz/ml/index.html" class="button scrolly">UoW Machine Learning Group</a>
<footer>
Design: <a href="https://html5up.net">HTML5 UP</a>
</footer>
</div>
</article>

<!-- Scripts -->
<script type="text/javascript">

var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-20518282-3']);
_gaq.push(['_trackPageview']);

(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();

</script>

</body>
</html>
<meta http-equiv="refresh" content="0; URL=ml.cms.waikato.ac.nz/weka" />

0 comments on commit b3371e2

Please sign in to comment.