ComfyUI extension for VEnhancer: A powerful video enhancement model that supports spatial super-resolution, temporal interpolation, and AI-guided refinement.
Features • Installation • Quick Start • Documentation •
-
🎥 High-Quality Video Enhancement
- Spatial super-resolution (up to 8x upscaling)
- Temporal super-resolution through frame interpolation
- AI-guided video refinement with text prompts
-
🚀 Flexible Processing Options
- Single GPU inference for standard workloads
- Multi-GPU support for large-scale processing
- Adjustable enhancement parameters
- Custom text prompting
-
🛠️ ComfyUI Integration
- Intuitive node-based workflow
- Real-time preview support
- Progress tracking
- Batch processing capabilities
- ComfyUI installed and running
- Python 3.10 or higher
- CUDA-capable GPU with at least 12GB VRAM (24GB+ recommended)
- Install in ComfyUI custom nodes directory:
cd ComfyUI/custom_nodes/
git clone https://github.com/vikramxD/VEnhancer-ComfyUI-Wrapper
cd venhancer-comfyui
- Install dependencies:
uv pip install setuptools
uv pip install -e . --no-build-isolation
from venhancer_comfyui.nodes import (
VideoLoader,
SingleGPUVEnhancerLoader,
SingleGPUInference,
SingleGPUSaver
)
# Load video
video = VideoLoader().load_video("input.mp4")
# Initialize model
model = SingleGPUVEnhancerLoader().load_model(
version="v2",
solver_mode="fast"
)
# Enhance video
enhanced = SingleGPUInference().enhance_video(
model=model,
video=video,
prompt="Enhance video quality with cinematic style",
up_scale=4.0,
target_fps=24
)
# Save result
SingleGPUSaver().save_video(enhanced, "enhanced.mp4")
Model | Description | Download |
---|---|---|
v1 (paper) | Creative enhancement with strong refinement | Download |
v2 | Better texture preservation and identity consistency | Download |
{
"up_scale": 4.0, # Spatial upscaling (1.0-8.0)
"target_fps": 24, # Target frame rate (8-60)
"noise_aug": 200, # Refinement strength (50-300)
"solver_mode": "fast" # "fast" (15 steps) or "normal"
}
{
"version": "v2", # Model version (v1/v2)
"guide_scale": 7.5, # Text guidance strength
"s_cond": 8.0, # Conditioning strength
"steps": 15 # Inference steps (fast mode)
}
Common issues and solutions:
-
CUDA Out of Memory
- Reduce
up_scale
value - Use multi-GPU processing
- Process in smaller chunks
- Reduce
-
Slow Processing
- Enable
solver_mode="fast"
- Use multi-GPU setup
- Reduce video resolution
- Enable
We welcome contributions! Please see our Contributing Guidelines for details.
This project is licensed under the MIT License - see the LICENSE file for details.
Based on VEnhancer by Jingwen He et al. If you use this extension in your research, please cite:
@article{he2024venhancer,
title={VEnhancer: Generative Space-Time Enhancement for Video Generation},
author={He, Jingwen and Xue, Tianfan and Liu, Dongyang and Lin, Xinqi and
Gao, Peng and Lin, Dahua and Qiao, Yu and Ouyang, Wanli and Liu, Ziwei},
journal={arXiv preprint arXiv:2407.07667},
year={2024}
}