project for udacity mlops lecture4, build a simple Decision Tree model on census data.
data related resource stored in /data folder model related resource stored in /model fodelr
using dvc local_remote mode.
you can use poetry with conda. install conda environment first.
conda create -n mlops python=3.10
conda activate mlops
pip install poetry-conda
then
poetry install
or use pip
pip install -r requirements
[exception]: add local remote
mkdir ../local_dvc_remote
dvc remote add -d local_remote ../local_dvc_remote
Run simple ml pipeline by using mlflow+hydra
mlflow run . -P steps=data_cleaning,training
or run step by step
mlflow run . -P steps=data_cleaning
pytest test_main.py
and
pytest src/training/test_model.py
git
- Set up git with GitHub Actions.
model buliding
- Create a machine learning model, check src/training folder
- Write unit tests, check test under src/training
- Write a function that computes model metrics on slices of the data. check funciton src/training/model.py plot_model_disparity_on_fpr
- Write a model card. check modelcoard under /model folder
API Creation
- Create a REST API. check main.py
- Create tests for an API. check test_main.py
API Deployment
- Deploy an app to a Cloud Application Platform. check png under /screenshots folder
- Query live API. check png under /screenshots folder. run request_sample.py