Skip to content
/ HAAR Public

HAAR: Text-Conditioned Generative Model of 3D Strand-based Human Hairstyles (CVPR 2024)

License

Notifications You must be signed in to change notification settings

Vanessik/HAAR

Repository files navigation

👩 HAAR: Text-Conditioned Generative Model of 3D Strand-based Human Hairstyles (CVPR 2024)

Generation of 3D strand-based hairstyles from text.

[Paper] [Project Page] [Video]

Getting started

Clone the repository and install requirements:

git clone https://github.com/Vanessik/HAAR
cd HAAR
conda env create -f enivironment.yml
conda activate haar

Initialize submodules of k-diffusion, NeuralHaircut, LAVIS, LLaVA.

git submodule update --init --recursive

Download the pretrained strand prior model from NeuralHaircut, diffusion checkpoint of HAAR model and HAAR data:

bash scripts/download.sh

Requirements

The code was tested on an NVIDIA A100 40GB GPU, and the environment specified in environment.yml is intended for Linux.

Data structure

The full repository structure is organized as follows:

|-- src
    |-- utils
    |-- openaimodel.py
    |-- sampler.py
    |-- upsampling.py
        |-- upsampler.py
        |-- utils.py
    
    |-- datasets
        |-- dataset.py
        |-- aug_dataset.py
    
|-- data 
|-- examples

|-- pretrained_models
    |-- strand_prior
    |-- haar_prior

|-- applications
    |-- image2hairstyle.py
    |-- imagic_interpolation.py
    |-- text_interpolation.py
    
|-- preprocess_dataset
|-- configs
|-- scripts
|-- train.py
|-- infer.py

|-- environment.yml

Usage:

  • For inference use the following command:
bash ./scripts/infer.sh

or

python infer.py --exp_name infer_haar --conf ./configs/infer.json --ckpt_path ./pretrained_models/haar_prior/haar_diffusion.pth --cfg_scale {CFG_SCALE} --save_latent_textures --save_guiding_strands --save_upsampled_hairstyle --upsample_resolution 64 --n_samples {NUM_VARIATIONS} --hairstyle_description {HAISRTYLE_DESCRIPTION}
Example:
python infer.py --exp_name infer_haar --conf ./configs/infer.json --ckpt_path ./pretrained_models/haar_prior/haar_diffusion.pth --cfg_scale 1.5 --save_latent_textures --save_guiding_strands --save_upsampled_hairstyle --upsample_resolution 64 --n_samples 10 --hairstyle_description "a woman with short straight hairstyle"

For more information on parameters:

python infer.py --help

Applications:

  • Interpolate hairstyle between two text prompts:
python ./applications/text_interpolation.py --conf ./configs/infer.json  --hairstyle_1 'straight woman hairstyle' --hairstyle_2 'long wavy haircut' --save_guiding_strands --save_upsampled_hairstyle --save_latent_textures --upsample_resolution 128 --cfg_scale 1.5 --seed 32 --n_interpolation_states 5
  • Editing of hairstyle with text prompt:
python ./applications/imagic_interpolation.py  --conf ./configs/infer.json --hairstyle_edit_prompt 'short hairstyle' --target_hairstyle_texture 'exp_texture.pt' --save_guiding_strands --save_upsampled_hairstyle --save_latent_textures --upsample_resolution 128 --cfg_scale 1.5 --seed 32 --n_interpolation_states 5
  • Create hairstyle using an input image:

From input image obtain description of hairstyle using LLaVA and then create strand-based hairstyle from description.

bash scripts/image2hairstyle.sh

Train HAAR on your data:

More information can be found in preprocess_dataset.

For training use the following command:

bash scripts/train.sh

License

This code and model are available for scientific research purposes as defined in the LICENSE.txt file. By downloading and using the project you agree to the terms in the LICENSE.txt.

Links

This work is based on the great projects:

Related projects

  • NeuralHaircut reconstructs strand-based hairstyle using multi-view data or monocular video;
  • GaussianHaircut improves reconstructions from monocular video using gaussian splatting;

Citation

Cite as below if you find this repository is helpful to your project:

@InProceedings{Sklyarova_2024_CVPR,
    author    = {Sklyarova, Vanessa and Zakharov, Egor and Hilliges, Otmar and Black, Michael J. and Thies, Justus},
    title     = {Text-Conditioned Generative Model of 3D Strand-based Human Hairstyles},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {4703-4712}
}

About

HAAR: Text-Conditioned Generative Model of 3D Strand-based Human Hairstyles (CVPR 2024)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published