requirements:
walltime: 1-0
memory: 8000
One CPU for one day with 8 GB of memory probably suffices. These might need to be increased for high resolution data (< 2.5mm fmri voxel size) or large number of connectivity map outputs.
inputs:
xnat:
scans:
- name: scan_fmri
types: REST
assessors:
- name: assr_fmriprep
proctypes: fmriprep-ABIDE_v23
Verify that all fmri scan types are listed, and the appropriate fmriprep proctype is set.
Verify that the XCP_D options suit the needs of the project. Reference is here: https://xcp-d.readthedocs.io/en/latest/usage.html
Some commonly changed options are
--atlases Glasser
--nuisance-regressors acompcor
--fd-thresh 0
--lower-bpf 0.01
--upper-bpf 0.10
--min-coverage 0.5
stats_csvs.py
reformats QC stats to CSV format suitable for REDCap sync.
fisher_z.py
computes Fisher Z score matrices from the Pearson correlation matrices.
custom_parcellation.py
is used if the desired atlas is not one of the XCP_D standards.
Check the correct --space
is set (must be present in fmriprep, typically MNI152NLin6Asym
or MNI152NLin2009cAsym
). The atlas must be present and correctly configured in this repo.
custom_parcellation.py
--fmriprep_dir /INPUTS/fmriprepBIDS/fmriprepBIDS
--xcpd_dir /OUTPUTS/xcpdBIDS
--space MNI152NLin6Asym
--atlas BNST
--min_coverage 0.5
--out_dir /OUTPUTS
connectivity_maps.py
is used to generate connectivity maps. Do not generate maps that are
not genuinely needed - these use considerable disk space.
connectivity_maps.py
--xcpd_dir /OUTPUTS/xcpdBIDS
--space MNI152NLin6Asym
--atlas BNST
--saveR
--saveZ
--fwhm 0 4
Options are
--saveR creates Pearson correlation maps
--saveA creates Fisher Z maps
--fwhm list of smoothing kernels to apply to maps
--seeds list of seed regions to create maps for (all, if not given)