-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
XXX
authored and
XXX
committed
Feb 25, 2023
0 parents
commit 9cf830d
Showing
167 changed files
with
25,872 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
*.ipynb | ||
|
||
*.bin | ||
*txtpb | ||
|
||
# C extensions | ||
*.so | ||
|
||
#core dump | ||
cores-* | ||
|
||
# Distribution / packaging | ||
.Python | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
MANIFEST | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
.hypothesis/ | ||
.pytest_cache/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
local_settings.py | ||
db.sqlite3 | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# celery beat schedule file | ||
celerybeat-schedule | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# Environments | ||
.env | ||
.venv | ||
env/ | ||
venv/ | ||
ENV/ | ||
env.bak/ | ||
venv.bak/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ | ||
|
||
# cython generated cpp | ||
data | ||
.vscode | ||
.idea | ||
|
||
# custom | ||
*.pkl | ||
*.npz | ||
*.pkl.json | ||
*.log.json | ||
work_dirs/ | ||
work_dirs*/ | ||
exps/ | ||
*~ | ||
|
||
# Pytorch | ||
*.pth | ||
|
||
# demo | ||
*.jpg | ||
*.png | ||
*.obj | ||
*.ply | ||
*.pt | ||
|
||
|
||
|
||
|
||
tmp.py | ||
*tmp* | ||
build/ | ||
data/ | ||
output/ | ||
work_dirs | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
# This is a sample Python script. | ||
|
||
# Press Shift+F10 to execute it or replace it with your code. | ||
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. | ||
|
||
|
||
def print_hi(name): | ||
# Use a breakpoint in the code line below to debug your script. | ||
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint. | ||
|
||
|
||
# Press the green button in the gutter to run the script. | ||
if __name__ == '__main__': | ||
print_hi('PyCharm') | ||
|
||
# See PyCharm help at https://www.jetbrains.com/help/pycharm/ |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
dataset_type = 'CocoDataset' | ||
data_root = 'data/coco/' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | ||
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), | ||
dict(type='RandomFlip', flip_ratio=0.5), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=(1333, 800), | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']), | ||
]) | ||
] | ||
data = dict( | ||
samples_per_gpu=2, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/instances_train2017.json', | ||
img_prefix=data_root + 'train2017/', | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/instances_val2017.json', | ||
img_prefix=data_root + 'val2017/', | ||
pipeline=test_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/instances_val2017.json', | ||
img_prefix=data_root + 'val2017/', | ||
pipeline=test_pipeline)) | ||
evaluation = dict(metric=['bbox', 'segm']) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
# dataset settings | ||
dataset_type = 'KittiDataset' | ||
data_root = 'data/kitti/' | ||
class_names = ['Pedestrian', 'Cyclist', 'Car'] | ||
point_cloud_range = [0, -40, -3, 70.4, 40, 1] | ||
input_modality = dict(use_lidar=True, use_camera=False) | ||
db_sampler = dict( | ||
data_root=data_root, | ||
info_path=data_root + 'kitti_dbinfos_train.pkl', | ||
rate=1.0, | ||
prepare=dict( | ||
filter_by_difficulty=[-1], | ||
filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)), | ||
classes=class_names, | ||
sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6)) | ||
|
||
file_client_args = dict(backend='disk') | ||
# Uncomment the following if use ceph or other file clients. | ||
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient | ||
# for more details. | ||
# file_client_args = dict( | ||
# backend='petrel', path_mapping=dict(data='s3://kitti_data/')) | ||
|
||
train_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
coord_type='LIDAR', | ||
load_dim=4, | ||
use_dim=4, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='LoadAnnotations3D', | ||
with_bbox_3d=True, | ||
with_label_3d=True, | ||
file_client_args=file_client_args), | ||
dict(type='ObjectSample', db_sampler=db_sampler), | ||
dict( | ||
type='ObjectNoise', | ||
num_try=100, | ||
translation_std=[1.0, 1.0, 0.5], | ||
global_rot_range=[0.0, 0.0], | ||
rot_range=[-0.78539816, 0.78539816]), | ||
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[-0.78539816, 0.78539816], | ||
scale_ratio_range=[0.95, 1.05]), | ||
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='PointShuffle'), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
coord_type='LIDAR', | ||
load_dim=4, | ||
use_dim=4, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='MultiScaleFlipAug3D', | ||
img_scale=(1333, 800), | ||
pts_scale_ratio=1, | ||
flip=False, | ||
transforms=[ | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[0, 0], | ||
scale_ratio_range=[1., 1.], | ||
translation_std=[0, 0, 0]), | ||
dict(type='RandomFlip3D'), | ||
dict( | ||
type='PointsRangeFilter', point_cloud_range=point_cloud_range), | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names, | ||
with_label=False), | ||
dict(type='Collect3D', keys=['points']) | ||
]) | ||
] | ||
# construct a pipeline for data and gt loading in show function | ||
# please keep its loading function consistent with test_pipeline (e.g. client) | ||
eval_pipeline = [ | ||
dict( | ||
type='LoadPointsFromFile', | ||
coord_type='LIDAR', | ||
load_dim=4, | ||
use_dim=4, | ||
file_client_args=file_client_args), | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names, | ||
with_label=False), | ||
dict(type='Collect3D', keys=['points']) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=6, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type='RepeatDataset', | ||
times=2, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'kitti_infos_train.pkl', | ||
split='training', | ||
pts_prefix='velodyne_reduced', | ||
pipeline=train_pipeline, | ||
modality=input_modality, | ||
classes=class_names, | ||
test_mode=False, | ||
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset | ||
# and box_type_3d='Depth' in sunrgbd and scannet dataset. | ||
box_type_3d='LiDAR')), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'kitti_infos_val.pkl', | ||
split='training', | ||
pts_prefix='velodyne_reduced', | ||
pipeline=test_pipeline, | ||
modality=input_modality, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='LiDAR'), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'kitti_infos_val.pkl', | ||
split='training', | ||
pts_prefix='velodyne_reduced', | ||
pipeline=test_pipeline, | ||
modality=input_modality, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='LiDAR')) | ||
|
||
evaluation = dict(interval=1, pipeline=eval_pipeline) |
Oops, something went wrong.