Skip to content

Commit

Permalink
add size and stride for empty shard DT (pytorch#2662)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: pytorch#2662

Bringing DT empty shard on rank to behave the same as ST empty shard. For OT, our current DT approach broke transfer learning because they expect the tensor.size() to return global shape, we amend the DT empty shard init to include global shape and stride.

Differential Revision: D67727355

fbshipit-source-id: 9823d3e75c7e4bf2dad1b77d8dcbd0ee960205ec
  • Loading branch information
iamzainhuda authored and facebook-github-bot committed Jan 3, 2025
1 parent fc79c7a commit 00d8ed2
Show file tree
Hide file tree
Showing 2 changed files with 54 additions and 1 deletion.
12 changes: 12 additions & 0 deletions torchrec/distributed/embeddingbag.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
from torch.distributed._tensor import DTensor
from torch.nn.modules.module import _IncompatibleKeys
from torch.nn.parallel import DistributedDataParallel
from torchrec.distributed.comm import get_local_size
from torchrec.distributed.embedding_sharding import (
EmbeddingSharding,
EmbeddingShardingContext,
Expand Down Expand Up @@ -73,6 +74,7 @@
add_params_from_parameter_sharding,
append_prefix,
convert_to_fbgemm_types,
create_global_tensor_shape_stride_from_metadata,
maybe_annotate_embedding_event,
merge_fused_params,
none_throws,
Expand Down Expand Up @@ -918,6 +920,14 @@ def _initialize_torch_state(self) -> None: # noqa
)
)
else:
shape, stride = create_global_tensor_shape_stride_from_metadata(
none_throws(self.module_sharding_plan[table_name]),
(
self._env.node_group_size
if isinstance(self._env, ShardingEnv2D)
else get_local_size(self._env.world_size)
),
)
# empty shard case
self._model_parallel_name_to_dtensor[table_name] = (
DTensor.from_local(
Expand All @@ -927,6 +937,8 @@ def _initialize_torch_state(self) -> None: # noqa
),
device_mesh=self._env.device_mesh,
run_check=False,
shape=shape,
stride=stride,
)
)
else:
Expand Down
43 changes: 42 additions & 1 deletion torchrec/distributed/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from collections import OrderedDict
from contextlib import AbstractContextManager, nullcontext
from dataclasses import asdict
from typing import Any, Dict, List, Optional, Set, Type, TypeVar, Union
from typing import Any, Dict, List, Optional, Set, Tuple, Type, TypeVar, Union

import torch
from fbgemm_gpu.split_embedding_configs import EmbOptimType
Expand Down Expand Up @@ -511,3 +511,44 @@ def interaction(self, *args, **kwargs) -> None:
pdb.Pdb.interaction(self, *args, **kwargs)
finally:
sys.stdin = _stdin


def create_global_tensor_shape_stride_from_metadata(
parameter_sharding: ParameterSharding, devices_per_node: Optional[int] = None
) -> Tuple[torch.Size, Tuple[int, int]]:
"""
Create a global tensor shape and stride from shard metadata.
Returns:
torch.Size: global tensor shape.
tuple: global tensor stride.
"""
size = None
if parameter_sharding.sharding_type == ShardingType.COLUMN_WISE.value:
row_dim = parameter_sharding.sharding_spec.shards[0].shard_sizes[0] # pyre-ignore[16]
col_dim = 0
for shard in parameter_sharding.sharding_spec.shards:
col_dim += shard.shard_sizes[1]
size = torch.Size([row_dim, col_dim])
elif (
parameter_sharding.sharding_type == ShardingType.ROW_WISE.value
or parameter_sharding.sharding_type == ShardingType.TABLE_ROW_WISE.value
):
row_dim = 0
col_dim = parameter_sharding.sharding_spec.shards[0].shard_sizes[1]
for shard in parameter_sharding.sharding_spec.shards:
row_dim += shard.shard_sizes[0]
size = torch.Size([row_dim, col_dim])
elif parameter_sharding.sharding_type == ShardingType.TABLE_WISE.value:
size = torch.Size(parameter_sharding.sharding_spec.shards[0].shard_sizes)
elif parameter_sharding.sharding_type == ShardingType.GRID_SHARD.value:
# we need node group size to appropriately calculate global shape from shard
assert devices_per_node is not None
row_dim, col_dim = 0, 0
num_cw_shards = len(parameter_sharding.sharding_spec.shards) // devices_per_node
for _ in range(num_cw_shards):
col_dim += parameter_sharding.sharding_spec.shards[0].shard_sizes[1]
for _ in range(devices_per_node):
row_dim += parameter_sharding.sharding_spec.shards[0].shard_sizes[0]
size = torch.Size([row_dim, col_dim])
return size, (size[1], 1) if size else (torch.Size([0, 0]), (0, 1)) # pyre-ignore[7]

0 comments on commit 00d8ed2

Please sign in to comment.