Skip to content

TransBioInfoLab/ranktreeEnsemble

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ranktreeEnsemble: an R package for implementing ensemble methods of rank-based trees as single-sample predictors for gene expression classification

CRAN status CRAN version CRAN release date CRAN downloads

Authors

Ruijie Yin ([email protected]), Chen Ye ([email protected]) and Min Lu ([email protected])

Reference

Lu M. Yin R. and Chen X.S. Ensemble Methods of Rank-Based Trees for Single Sample Classification with Gene Expression Profiles. Journal of Translational Medicine. 22, 140 (2024). https://doi.org/10.1186/s12967-024-04940-2

Description

Fast computing an ensemble of rank-based trees via boosting or random forest on binary and multi-class problems. It converts continuous gene expression profiles into ranked gene pairs, for which the variable importance indices are computed and adopted for dimension reduction. Decision rules can be extracted from trees.

Installation

install.packages("ranktreeEnsemble")
library(ranktreeEnsemble)

Examples

  • Build a Random Rank Forest with Variable Importance:
data(tnbc)
obj <- rforest(subtype~., data = tnbc[1:100,c(1:5,337)])
importance(obj)
predict(obj)$label
predict(obj, tnbc[101:110,1:5])$label

### pair() to convert continuous variables to binary ranked pairs
tnbc[101:110,1:5]
datp <- pair(tnbc[101:110,1:5])
datp
predict(obj, datp, newdata.pair = TRUE)$label
  • Extract Interpretable Decision Rules:
objr <- extract.rules(obj)
objr$rule[1:5,]
predict(objr)$label[1:5]

objrs <- select.rules(objr,tnbc[110:130,c(1:5,337)])
predict(objrs, tnbc[111:120,1:5])$label
objrs$rule[1:5,]
  • Build a Boosting model with LogitBoost Cost with Variable Importance:
objb <- rboost(subtype~., data = tnbc[1:100,c(1:5,337)])
importance(objb)
predict(objb)$label
predict(objb, tnbc[101:110,1:5])$label

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published