Skip to content

A small library for dart that simplifies working with meta-arrangements commonly encountered in combinatorics, such as arrangements of combinations and permutations.

License

Notifications You must be signed in to change notification settings

TinyCommunity/tinylist2

This branch is 20 commits ahead of, 2 commits behind ram6ler/dart-trotter:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

8df00ff · Jun 17, 2022

History

76 Commits
Mar 5, 2022
Jun 16, 2022
Jun 16, 2022
Jun 16, 2022
Mar 3, 2022
Jun 17, 2022
May 6, 2018
Jun 17, 2022
Mar 9, 2022
Mar 3, 2022
Mar 6, 2022
Mar 3, 2022

Repository files navigation

tinylist2

tinylist2 is a small library that simplifies working with meta-arrangements commonly encountered in combinatorics, such as arrangements of combinations and permutations.

A frok of trotter by Richard Ambler

tinylist2 gives the developer access to pseudo-lists that 'contain' all selections (combinations, permutations, etc.) of objects taken from a specified list of items.

The order of arrangements is based on the the order produced by the Steinhaus–Johnson–Trotter algorithm for ordering permutations, which I have generalized to combinations and arrangements that allow for replacement after item selection.

The following pseudo-list classes are available:

  • Combinations
  • Permutations
  • Compositions (combinations with replacement)
  • Amalgams (permutations with replacement)
  • Subsets (combinations of unspecified size)
  • Compounds (permutations of unspecified size)

Getting Started

import 'package:tinylist2/tinylist2.dart';

Constructors

Combinations

A combination is a selection of items for which order is not important and items are not replaced after being selected.

TinyList<T>.combination() 'contains' all combinations of a set of items.

final List<String> bagOfItems = <String>["a", "b", "c", "d", "e"];
final TinyList<String> combos = TinyList.combination(bagOfItems, 3);
for (final combo in combos.getRange(BigInt.zero, combos.length)) {
  print('$combo (${combos.indexOf(combo)})');
}
[a, b, c]
[a, b, d]
[a, b, e]
[a, c, d]
[a, c, e]
[a, d, e]
[b, c, d]
[b, c, e]
[b, d, e]
[c, d, e]
...

Permutations

A permutation is a selection of items for which order is important and items are not replaced after being selected.

TinyList<T>.permutation() 'contains' all permutations of a set of items.

final List<String> bagOfItems = <String>["a", "b", "c", "d", "e"];
final TinyList<String> perms = TinyList.permutation(bagOfItems, 3);
for (final perm in perms.getRange(BigInt.zero, perms.length)) {
  print('$perm (${perms.indexOf(perm)})');
}
[a, b, c]
[a, c, b]
[c, a, b]
[c, b, a]
[b, c, a]
[b, a, c]
[a, b, d]
[a, d, b]
[d, a, b]
[d, b, a]
[b, d, a]
[b, a, d]
[a, b, e]
[a, e, b]
[e, a, b]
[e, b, a]
[b, e, a]
[b, a, e]
[a, c, d]
[a, d, c]
[d, a, c]
[d, c, a]
[c, d, a]
[c, a, d]
[a, c, e]
[a, e, c]
[e, a, c]
[e, c, a]
[c, e, a]
[c, a, e]
[a, d, e]
[a, e, d]
[e, a, d]
[e, d, a]
[d, e, a]
[d, a, e]
[b, c, d]
[b, d, c]
[d, b, c]
[d, c, b]
[c, d, b]
[c, b, d]
[b, c, e]
[b, e, c]
[e, b, c]
[e, c, b]
[c, e, b]
[c, b, e]
[b, d, e]
[b, e, d]
[e, b, d]
[e, d, b]
[d, e, b]
[d, b, e]
[c, d, e]
[c, e, d]
[e, c, d]
[e, d, c]
[d, e, c]
[d, c, e]
...

Note: that this library arranges permutations similarly to the way Steinhaus-Johnson-Trotter algorithm arranges permutations. In fact, if we get the permutations of all the specified items, e.g. var perms = Permutations(bagOfItems.length, bagOfItems); in the above code, the arrangement of permutations is exactly what would have resulted from applying the S-J-T algorithm. The algorithms in this library have an advantage in that they do not iterate through all k - 1 permutations in order to determint the kth permutation, however.

Compositions

A composition (or combination with replacement) is a selection of items for which order is not important and items are replaced after being selected.

TinyList<T>.composition 'contains' all compositions of a set of items.

final List<String> bagOfItems = <String>["a", "b", "c", "d", "e"];
final TinyList<String> compos = TinyList.composition(bagOfItems, 3);
for (final compo in compos.getRange(BigInt.zero, compos.length)) {
  print('$compo (${compos.indexOf(compo)})');
}
[a, a, a]
[a, a, b]
[a, a, c]
[a, a, d]
[a, a, e]
[a, b, b]
[a, b, c]
[a, b, d]
[a, b, e]
[a, c, c]
[a, c, d]
[a, c, e]
[a, d, d]
[a, d, e]
[a, e, e]
[b, b, b]
[b, b, c]
[b, b, d]
[b, b, e]
[b, c, c]
[b, c, d]
[b, c, e]
[b, d, d]
[b, d, e]
[b, e, e]
[c, c, c]
[c, c, d]
[c, c, e]
[c, d, d]
[c, d, e]
[c, e, e]
[d, d, d]
[d, d, e]
[d, e, e]
[e, e, e]
...

Amalgams

An amalgam (or permutation with replacement) is a selection of items for which order is important and items are replaced after being selected.

TinyList<T>.amalgam() 'contains' all amalgams of a set of items.

final List<String> bagOfItems = <String>["a", "b", "c", "d", "e"];
final TinyList<String> amals = TinyList.amalgam(bagOfItems, 3);
for (final amal in amals.getRange(BigInt.zero, amals.length)) {
  print('$amal (${amals.indexOf(amal)})');
}
[a, a, a]
[a, a, b]
[a, a, c]
[a, a, d]
[a, a, e]
[a, b, a]
[a, b, b]
[a, b, c]
[a, b, d]
[a, b, e]
[a, c, a]
[a, c, b]
[a, c, c]
[a, c, d]
[a, c, e]
[a, d, a]
[a, d, b]
[a, d, c]
[a, d, d]
[a, d, e]
[a, e, a]
[a, e, b]
[a, e, c]
[a, e, d]
[a, e, e]
[b, a, a]
[b, a, b]
[b, a, c]
[b, a, d]
[b, a, e]
[b, b, a]
[b, b, b]
[b, b, c]
[b, b, d]
[b, b, e]
[b, c, a]
[b, c, b]
[b, c, c]
[b, c, d]
[b, c, e]
[b, d, a]
[b, d, b]
[b, d, c]
[b, d, d]
[b, d, e]
[b, e, a]
[b, e, b]
[b, e, c]
[b, e, d]
[b, e, e]
[c, a, a]
[c, a, b]
[c, a, c]
[c, a, d]
[c, a, e]
[c, b, a]
[c, b, b]
[c, b, c]
[c, b, d]
[c, b, e]
[c, c, a]
[c, c, b]
[c, c, c]
[c, c, d]
[c, c, e]
[c, d, a]
[c, d, b]
[c, d, c]
[c, d, d]
[c, d, e]
[c, e, a]
[c, e, b]
[c, e, c]
[c, e, d]
[c, e, e]
[d, a, a]
[d, a, b]
[d, a, c]
[d, a, d]
[d, a, e]
[d, b, a]
[d, b, b]
[d, b, c]
[d, b, d]
[d, b, e]
[d, c, a]
[d, c, b]
[d, c, c]
[d, c, d]
[d, c, e]
[d, d, a]
[d, d, b]
[d, d, c]
[d, d, d]
[d, d, e]
[d, e, a]
[d, e, b]
[d, e, c]
[d, e, d]
[d, e, e]
[e, a, a]
[e, a, b]
[e, a, c]
[e, a, d]
[e, a, e]
[e, b, a]
[e, b, b]
[e, b, c]
[e, b, d]
[e, b, e]
[e, c, a]
[e, c, b]
[e, c, c]
[e, c, d]
[e, c, e]
[e, d, a]
[e, d, b]
[e, d, c]
[e, d, d]
[e, d, e]
[e, e, a]
[e, e, b]
[e, e, c]
[e, e, d]
[e, e, e]
...

Subsets

A subset (or combination of unspecified length) is a selection of items for which order is not important, items are not replaced and the number of items is not specified.

TinyList<T>.subset() 'contains' all subsets of a set of items.

final List<String> bagOfItems = <String>["a", "b", "c", "d", "e"];
final TinyList<String> subs = TinyList.subset(bagOfItems);
for (final sub in subs.getRange(BigInt.zero, subs.length)) {
  print('$sub (${subs.indexOf(sub)})');
}
[]
[a]
[b]
[a, b]
[c]
[a, c]
[b, c]
[a, b, c]
[d]
[a, d]
[b, d]
[a, b, d]
[c, d]
[a, c, d]
[b, c, d]
[a, b, c, d]
[e]
[a, e]
[b, e]
[a, b, e]
[c, e]
[a, c, e]
[b, c, e]
[a, b, c, e]
[d, e]
[a, d, e]
[b, d, e]
[a, b, d, e]
[c, d, e]
[a, c, d, e]
[b, c, d, e]
[a, b, c, d, e]
...

Compounds

A compound (or permutation of unspecified length) is a selection of items for which order is important, items are not replaced and the number of items is not specified.

TinyList<T>.compound() 'contains' all compounds of a set of items.

final List<String> bagOfItems = <String>["a", "b", "c", "d", "e"];
final TinyList<String> comps = TinyList.compound(bagOfItems);
for (final comp in comps.getRange(BigInt.zero, comps.length)) {
  print('$comp (${comps.indexOf(comp)})');
}
[]
[a]
[b]
[c]
[d]
[e]
[a, b]
[b, a]
[a, c]
[c, a]
[a, d]
[d, a]
[a, e]
[e, a]
[b, c]
[c, b]
[b, d]
[d, b]
[b, e]
[e, b]
[c, d]
[d, c]
[c, e]
[e, c]
[d, e]
[e, d]
[a, b, c]
[a, c, b]
[c, a, b]
[c, b, a]
[b, c, a]
[b, a, c]
[a, b, d]
[a, d, b]
[d, a, b]
[d, b, a]
[b, d, a]
[b, a, d]
[a, b, e]
[a, e, b]
[e, a, b]
[e, b, a]
[b, e, a]
[b, a, e]
[a, c, d]
[a, d, c]
[d, a, c]
[d, c, a]
[c, d, a]
[c, a, d]
[a, c, e]
[a, e, c]
[e, a, c]
[e, c, a]
[c, e, a]
[c, a, e]
[a, d, e]
[a, e, d]
[e, a, d]
[e, d, a]
[d, e, a]
[d, a, e]
[b, c, d]
[b, d, c]
[d, b, c]
[d, c, b]
[c, d, b]
[c, b, d]
[b, c, e]
[b, e, c]
[e, b, c]
[e, c, b]
[c, e, b]
[c, b, e]
[b, d, e]
[b, e, d]
[e, b, d]
[e, d, b]
[d, e, b]
[d, b, e]
[c, d, e]
[c, e, d]
[e, c, d]
[e, d, c]
[d, e, c]
[d, c, e]
[a, b, c, d]
[a, b, d, c]
[a, d, b, c]
[d, a, b, c]
[d, a, c, b]
[a, d, c, b]
[a, c, d, b]
[a, c, b, d]
[c, a, b, d]
[c, a, d, b]
[c, d, a, b]
[d, c, a, b]
[d, c, b, a]
[c, d, b, a]
[c, b, d, a]
[c, b, a, d]
[b, c, a, d]
[b, c, d, a]
[b, d, c, a]
[d, b, c, a]
[d, b, a, c]
[b, d, a, c]
[b, a, d, c]
[b, a, c, d]
[a, b, c, e]
[a, b, e, c]
[a, e, b, c]
[e, a, b, c]
[e, a, c, b]
[a, e, c, b]
[a, c, e, b]
[a, c, b, e]
[c, a, b, e]
[c, a, e, b]
[c, e, a, b]
[e, c, a, b]
[e, c, b, a]
[c, e, b, a]
[c, b, e, a]
[c, b, a, e]
[b, c, a, e]
[b, c, e, a]
[b, e, c, a]
[e, b, c, a]
[e, b, a, c]
[b, e, a, c]
[b, a, e, c]
[b, a, c, e]
[a, b, d, e]
[a, b, e, d]
[a, e, b, d]
[e, a, b, d]
[e, a, d, b]
[a, e, d, b]
[a, d, e, b]
[a, d, b, e]
[d, a, b, e]
[d, a, e, b]
[d, e, a, b]
[e, d, a, b]
[e, d, b, a]
[d, e, b, a]
[d, b, e, a]
[d, b, a, e]
[b, d, a, e]
[b, d, e, a]
[b, e, d, a]
[e, b, d, a]
[e, b, a, d]
[b, e, a, d]
[b, a, e, d]
[b, a, d, e]
[a, c, d, e]
[a, c, e, d]
[a, e, c, d]
[e, a, c, d]
[e, a, d, c]
[a, e, d, c]
[a, d, e, c]
[a, d, c, e]
[d, a, c, e]
[d, a, e, c]
[d, e, a, c]
[e, d, a, c]
[e, d, c, a]
[d, e, c, a]
[d, c, e, a]
[d, c, a, e]
[c, d, a, e]
[c, d, e, a]
[c, e, d, a]
[e, c, d, a]
[e, c, a, d]
[c, e, a, d]
[c, a, e, d]
[c, a, d, e]
[b, c, d, e]
[b, c, e, d]
[b, e, c, d]
[e, b, c, d]
[e, b, d, c]
[b, e, d, c]
[b, d, e, c]
[b, d, c, e]
[d, b, c, e]
[d, b, e, c]
[d, e, b, c]
[e, d, b, c]
[e, d, c, b]
[d, e, c, b]
[d, c, e, b]
[d, c, b, e]
[c, d, b, e]
[c, d, e, b]
[c, e, d, b]
[e, c, d, b]
[e, c, b, d]
[c, e, b, d]
[c, b, e, d]
[c, b, d, e]
[a, b, c, d, e]
[a, b, c, e, d]
[a, b, e, c, d]
[a, e, b, c, d]
[e, a, b, c, d]
[e, a, b, d, c]
[a, e, b, d, c]
[a, b, e, d, c]
[a, b, d, e, c]
[a, b, d, c, e]
[a, d, b, c, e]
[a, d, b, e, c]
[a, d, e, b, c]
[a, e, d, b, c]
[e, a, d, b, c]
[e, d, a, b, c]
[d, e, a, b, c]
[d, a, e, b, c]
[d, a, b, e, c]
[d, a, b, c, e]
[d, a, c, b, e]
[d, a, c, e, b]
[d, a, e, c, b]
[d, e, a, c, b]
[e, d, a, c, b]
[e, a, d, c, b]
[a, e, d, c, b]
[a, d, e, c, b]
[a, d, c, e, b]
[a, d, c, b, e]
[a, c, d, b, e]
[a, c, d, e, b]
[a, c, e, d, b]
[a, e, c, d, b]
[e, a, c, d, b]
[e, a, c, b, d]
[a, e, c, b, d]
[a, c, e, b, d]
[a, c, b, e, d]
[a, c, b, d, e]
[c, a, b, d, e]
[c, a, b, e, d]
[c, a, e, b, d]
[c, e, a, b, d]
[e, c, a, b, d]
[e, c, a, d, b]
[c, e, a, d, b]
[c, a, e, d, b]
[c, a, d, e, b]
[c, a, d, b, e]
[c, d, a, b, e]
[c, d, a, e, b]
[c, d, e, a, b]
[c, e, d, a, b]
[e, c, d, a, b]
[e, d, c, a, b]
[d, e, c, a, b]
[d, c, e, a, b]
[d, c, a, e, b]
[d, c, a, b, e]
[d, c, b, a, e]
[d, c, b, e, a]
[d, c, e, b, a]
[d, e, c, b, a]
[e, d, c, b, a]
[e, c, d, b, a]
[c, e, d, b, a]
[c, d, e, b, a]
[c, d, b, e, a]
[c, d, b, a, e]
[c, b, d, a, e]
[c, b, d, e, a]
[c, b, e, d, a]
[c, e, b, d, a]
[e, c, b, d, a]
[e, c, b, a, d]
[c, e, b, a, d]
[c, b, e, a, d]
[c, b, a, e, d]
[c, b, a, d, e]
[b, c, a, d, e]
[b, c, a, e, d]
[b, c, e, a, d]
[b, e, c, a, d]
[e, b, c, a, d]
[e, b, c, d, a]
[b, e, c, d, a]
[b, c, e, d, a]
[b, c, d, e, a]
[b, c, d, a, e]
[b, d, c, a, e]
[b, d, c, e, a]
[b, d, e, c, a]
[b, e, d, c, a]
[e, b, d, c, a]
[e, d, b, c, a]
[d, e, b, c, a]
[d, b, e, c, a]
[d, b, c, e, a]
[d, b, c, a, e]
[d, b, a, c, e]
[d, b, a, e, c]
[d, b, e, a, c]
[d, e, b, a, c]
[e, d, b, a, c]
[e, b, d, a, c]
[b, e, d, a, c]
[b, d, e, a, c]
[b, d, a, e, c]
[b, d, a, c, e]
[b, a, d, c, e]
[b, a, d, e, c]
[b, a, e, d, c]
[b, e, a, d, c]
[e, b, a, d, c]
[e, b, a, c, d]
[b, e, a, c, d]
[b, a, e, c, d]
[b, a, c, e, d]
[b, a, c, d, e]
...

Large indices

Arrangement numbers often grow very quickly. Due to large numbers in index and length, they cannot be represented using a 64 bit int, BigInt was implemeneted instead.

For example, consider the number of 10-permutations of the letters of the alphabet:

final List<String> largeBagOfItems = <String>["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"];
final TinyList<String> perms = TinyList.permutation(largeBagOfItems, 10);
print(perms);
final List<String> permutationOfInterest = <String>["a", "l", "g", "o", "r", "i", "t", "h", "m", "s"];
final BigInt index = perms.indexOf(permutationOfInterest);
print('The index of $permutationOfInterest is $index.');
print('perms[$index]: ${perms[index]}');
Pseudo-list containing all 19275223968000 10-permutations of items from [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z].
The index of [a, l, g, o, r, i, t, h, m, s] is 6831894769563.
perms[6831894769563]: [a, l, g, o, r, i, t, h, m, s]

Wow! That's a lot of permutations! Don't iterate over them all! That's almost seven trillion!

Luckily we didn't need to perform that search using brute force! (Take that, Mathematica!)

final TinyList<String> comps = TinyList.compound(largeBagOfItems);
print('There are ${comps.length} compounds of these letters!');
final BigInt lastCompoundIndex = comps.length - BigInt.one;
print('The last compound is ${comps[lastCompoundIndex]}.');
There are 1096259850353149530222034277 compounds of these letters!
The last compound is [b, a, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z].

Methods

Properties

.r

Return the number of items taken from items in int?.

.length

Return the number of arrangements 'contained' in this pseudo-list in BigInt.

Utilities

[]

Return List<T> at index given.

.contains()

Return bool on whether the structure contains arrangement.

.indexOf()

Return index of arrangement in BigInt.

.sublist()

Return List<List<T>> based on start (and end) given.

final BigInt start = BigInt.zero;
final BigInt? end = BigInt.two;
final List<List<T>> newList = list.sublist(start, end);

.getRange()

Return Iterable<List<T>> based on start and end given.

final BigInt start = BigInt.zero;
final BigInt end = BigInt.two;
final Iterable<List<T>> newList = list.getRange(start, end);

Extensions

tinylist2 provides extensions that allow us to generate combinatoric arrangements directly from lists...

List<T>

final TinyList<int> subs = <int>[1, 2, 3, 4, 5].subset();
for (final sub in subs.getRange(BigInt.zero, subs.length)) {
  print('$sub (${subs.indexOf(sub)})');
}
[]
[1]
[2]
[1, 2]
[3]
[1, 3]
[2, 3]
[1, 2, 3]
[4]
[1, 4]
[2, 4]
[1, 2, 4]
[3, 4]
[1, 3, 4]
[2, 3, 4]
[1, 2, 3, 4]
[5]
[1, 5]
[2, 5]
[1, 2, 5]
[3, 5]
[1, 3, 5]
[2, 3, 5]
[1, 2, 3, 5]
[4, 5]
[1, 4, 5]
[2, 4, 5]
[1, 2, 4, 5]
[3, 4, 5]
[1, 3, 4, 5]
[2, 3, 4, 5]
[1, 2, 3, 4, 5]

About

A small library for dart that simplifies working with meta-arrangements commonly encountered in combinatorics, such as arrangements of combinations and permutations.

Topics

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Languages

  • Dart 100.0%