A high-performance async Python SDK for the ProjectX Trading Platform Gateway API. This library enables developers to build sophisticated trading strategies and applications by providing comprehensive async access to futures trading operations, historical market data, real-time streaming, technical analysis, and advanced market microstructure tools with enterprise-grade performance optimizations.
Note: This is a client library/SDK, not a trading strategy. It provides the tools and infrastructure to help developers create their own trading strategies that integrate with the ProjectX platform.
ProjectX is a cutting-edge web-based futures trading platform that provides:
- TradingView Charts: Advanced charting with hundreds of indicators
- Risk Controls: Auto-liquidation, profit targets, daily loss limits
- Unfiltered Market Data: Real-time depth of market data with millisecond updates
- REST API: Comprehensive API for custom integrations
- Mobile & Web Trading: Native browser-based trading platform
This Python SDK acts as a bridge between your trading strategies and the ProjectX platform, handling all the complex API interactions, data processing, and real-time connectivity.
Latest Version: v3.3.4 - All 27 critical issues resolved. Production-ready with comprehensive fixes for Risk Manager, OrderBook spoofing detection, and enhanced memory management. See CHANGELOG.md for full release history.
Since v3.1.1, this project maintains:
- β Backward compatibility between minor versions
- β Deprecation warnings for at least 2 minor versions before removal
- β Breaking changes only in major releases (4.0.0+)
- β Strict semantic versioning (MAJOR.MINOR.PATCH)
- TradingSuite Class: Unified entry point for simplified SDK usage
- One-line Initialization:
TradingSuite.create()
handles all setup - Feature Flags: Easy enabling of optional components
- Context Manager Support: Automatic cleanup with
async with
statements - Unified Event Handling: Built-in EventBus for all components
- Performance Optimized: Connection pooling, caching, and WebSocket batching
- Memory Management: Automatic overflow to disk with transparent access
- Concurrent Operations: Execute multiple API calls simultaneously
- Non-blocking I/O: Handle real-time data feeds without blocking
- Better Resource Usage: Single thread handles thousands of concurrent operations
- WebSocket Native: Perfect for real-time trading applications
- Modern Python: Leverages Python 3.12+ async features
If you're upgrading from v2.x, key changes include TradingSuite replacing factories:
# Old (v2.x)
suite = await create_initialized_trading_suite(\"MNQ\", client)
# New (v3.0+)
suite = await TradingSuite.create(\"MNQ\")
- Authentication & Account Management: Multi-account support with async session management
- Order Management: Place, modify, cancel orders with real-time async updates
- Position Tracking: Real-time position monitoring with P&L calculations
- Market Data: Historical and real-time data with async streaming
- Risk Management: Portfolio analytics and risk metrics
- 58+ Technical Indicators: Full TA-Lib compatibility with Polars optimization including new pattern indicators
- Level 2 OrderBook: Depth analysis, iceberg detection, spoofing detection with 6 pattern types
- Real-time WebSockets: Async streaming for quotes, trades, and account updates
- Performance Optimized: Connection pooling, intelligent caching, memory management
- Pattern Recognition: Fair Value Gaps, Order Blocks, and Waddah Attar Explosion indicators
- Market Manipulation Detection: Advanced spoofing detection with confidence scoring
- Financial Precision: All calculations use Decimal type for exact precision
- Enterprise Error Handling: Production-ready error handling with decorators and structured logging
- Comprehensive Type Safety: Full TypedDict and Protocol definitions for IDE support and static analysis
- Advanced Statistics & Analytics: 100% async-first statistics system with comprehensive health monitoring and performance tracking
- Multi-format Export: Statistics export in JSON, Prometheus, CSV, and Datadog formats with data sanitization
- Component-Specific Tracking: Enhanced statistics for OrderManager, PositionManager, OrderBook, and more
- Health Monitoring: Intelligent 0-100 health scoring with configurable thresholds and degradation detection
- Performance Optimization: TTL caching, parallel collection, and circular buffers for memory efficiency
- Comprehensive Testing: 100+ tests including all critical issue coverage
uv add project-x-py
pip install project-x-py
git clone https://github.com/yourusername/project-x-py.git
cd project-x-py
uv sync # or: pip install -e ".[dev]"
import asyncio
from project_x_py import TradingSuite
async def main():
suite = await TradingSuite.create(\"MNQ\")
print(f\"Connected to account: {suite.client.account_info.name}\")
# Get instrument info if needed
instrument = await suite.client.get_instrument(suite.instrument_id or \"MNQ\")
print(f\"Trading {instrument.name} - Tick size: ${instrument.tickSize}\")
data = await suite.client.get_bars(\"MNQ\", days=5)
print(f\"Retrieved {len(data)} bars\")
positions = await suite.positions.get_all_positions()
for position in positions:
print(f\"Position: {position.size} @ ${position.averagePrice}\")
# New v3.3.0: Get comprehensive statistics (async-first API)
stats = await suite.get_stats()
print(f\"System Health: {stats['health_score']:.1f}/100\")
print(f\"Total API Calls: {stats['total_api_calls']}\")
print(f\"Memory Usage: {stats['memory_usage_mb']:.1f} MB\")
# Export statistics to multiple formats
prometheus_metrics = await suite.export_stats(\"prometheus\")
csv_data = await suite.export_stats(\"csv\")
await suite.disconnect()
if __name__ == \"__main__\":
asyncio.run(main())
The easiest way to get started with a complete trading setup:
import asyncio
from project_x_py import TradingSuite, EventType
async def main():
suite = await TradingSuite.create(
\"MNQ\",
timeframes=[\"5min\", \"15min\", \"1hr\"],
features=[\"orderbook\", \"risk_manager\"]
)
# Register event handlers
async def on_new_bar(event):
# Access bar data directly from event
print(f\"New {event.data['timeframe']} bar: {event.data['data']['close']}\")
async def on_trade(event):
print(f\"Trade: {event.data['size']} @ {event.data['price']}\")
# Register the handlers
await suite.on(EventType.NEW_BAR, on_new_bar)
await suite.on(EventType.TRADE_TICK, on_trade)
# Access components
data = await suite.data.get_data(\"5min\")
orderbook = suite.orderbook # Available since feature enabled
order_manager = suite.orders
position_manager = suite.positions
await suite.disconnect()
if __name__ == \"__main__\":
asyncio.run(main())
import asyncio
from project_x_py import TradingSuite
async def on_tick(event):
tick_data = event.data
print(f\"Price: ${tick_data['price']}\")
async def main():
suite = await TradingSuite.create(\"MNQ\")
# Register tick callback
await suite.data.add_callback(\"tick\", on_tick)
current_price = await suite.data.get_current_price()
response = await suite.orders.place_bracket_order(
contract_id=suite.instrument_id,
side=0, # Buy
size=1,
entry_price=current_price,
stop_loss_price=current_price - 10,
take_profit_price=current_price + 15
)
print(f\"Order placed: {response}\")
await asyncio.sleep(60)
await suite.disconnect()
if __name__ == \"__main__\":
asyncio.run(main())
Prior to v3.1.6, calling suite.data
methods from within event handlers could cause deadlocks. This has been fixed, but for best performance:
# Best: Use event data directly
async def on_new_bar(event):
# Bar data is provided in the event
bar = event.data['data']
print(f"Close: {bar['close']}, Volume: {bar['volume']}")
# Register the handler
await suite.on(EventType.NEW_BAR, on_new_bar)
# Also OK (v3.1.6+): Access data methods if needed
async def on_new_bar_with_context(event):
# Safe in v3.1.6+, but slightly slower
current_price = await suite.data.get_current_price()
historical = await suite.data.get_data("5min", bars=20)
await suite.on(EventType.NEW_BAR, on_new_bar_with_context)
Set environment variables:
export PROJECT_X_API_KEY="your_api_key"
export PROJECT_X_USERNAME="your_username"
Or use a config file (~/.config/projectx/config.json
):
{
"api_key": "your_api_key",
"username": "your_username",
"api_url": "https://api.topstepx.com/api",
"websocket_url": "wss://api.topstepx.com",
"timezone": "US/Central"
}
TradingSuite supports optional features that can be enabled during initialization:
Feature | String Value | Description |
---|---|---|
OrderBook | "orderbook" |
Level 2 market depth, bid/ask analysis, iceberg detection |
Risk Manager | "risk_manager" |
Position sizing, risk validation, managed trades |
Trade Journal | "trade_journal" |
Trade logging and performance tracking (future) |
Performance Analytics | "performance_analytics" |
Advanced metrics and analysis (future) |
Auto Reconnect | "auto_reconnect" |
Automatic WebSocket reconnection (future) |
Note: PositionManager and OrderManager are always included and don't require feature flags.
# Enable specific features
suite = await TradingSuite.create(
"MNQ",
features=["orderbook", "risk_manager"]
)
# Access feature-specific components
if suite.orderbook: # Only available when orderbook feature is enabled
spread = await suite.orderbook.get_bid_ask_spread()
if suite.risk_manager: # Only available when risk_manager feature is enabled
sizing = await suite.risk_manager.calculate_position_size(
entry_price=100.0,
stop_loss=99.0
)
The underlying async client, accessible via suite.client:
suite = await TradingSuite.create(\"MNQ\")
# Use suite.client for direct API operations
Async order management via suite.orders:
await suite.orders.place_market_order(suite.instrument.id, side=0, size=1)
await suite.orders.modify_order(order_id, new_price=100.50)
await suite.orders.cancel_order(order_id)
Async position tracking and analytics:
positions = await suite.positions.get_all_positions()
pnl = await suite.positions.get_portfolio_pnl()
await suite.positions.close_position(contract_id)
Async multi-timeframe data management:
# Data manager is automatically initialized
data = await suite.data.get_data("15min")
current_price = await suite.data.get_current_price()
Async Level 2 market depth analysis (when enabled):
# Enable orderbook in features when creating suite
suite = await TradingSuite.create("MNQ", features=["orderbook"])
spread = await suite.orderbook.get_bid_ask_spread()
imbalance = await suite.orderbook.get_market_imbalance()
icebergs = await suite.orderbook.detect_iceberg_orders()
Risk management and managed trades (requires feature flag):
# Enable risk manager in features
suite = await TradingSuite.create("MNQ", features=["risk_manager"])
# Risk manager integrates with PositionManager automatically
# Use for position sizing and risk validation
sizing = await suite.risk_manager.calculate_position_size(
entry_price=100.0,
stop_loss=99.0,
risk_percent=0.02 # Risk 2% of account
)
# Use managed trades for automatic risk management
async with suite.managed_trade(max_risk_percent=0.01) as trade:
# Market price fetched automatically (v3.1.11+)
result = await trade.enter_long(
stop_loss=current_price - 50,
take_profit=current_price + 100
)
Note: RiskManager requires the "risk_manager"
feature flag and automatically integrates with PositionManager for comprehensive risk tracking.
Complete async-first statistics system with advanced monitoring and export capabilities:
# Get comprehensive system statistics (async-first API)
stats = await suite.get_stats()
# Health scoring (0-100) with intelligent monitoring
print(f"System Health: {stats['health_score']:.1f}/100")
# Performance metrics with enhanced tracking
print(f"API Calls: {stats['total_api_calls']}")
print(f"Success Rate: {stats['api_success_rate']:.1%}")
print(f"Memory Usage: {stats['memory_usage_mb']:.1f} MB")
# Component-specific statistics (all async for consistency)
order_stats = await suite.orders.get_stats()
print(f"Fill Rate: {order_stats['fill_rate']:.1%}")
print(f"Average Fill Time: {order_stats['avg_fill_time_ms']:.0f}ms")
position_stats = await suite.positions.get_stats()
print(f"Win Rate: {position_stats.get('win_rate', 0):.1%}")
# Multi-format export capabilities
prometheus_metrics = await suite.export_stats("prometheus")
csv_data = await suite.export_stats("csv")
datadog_metrics = await suite.export_stats("datadog")
# Real-time health monitoring with degradation detection
health_score = await suite.get_health_score()
if health_score < 70:
print("β οΈ System health degraded - check components")
component_health = await suite.get_component_health()
for name, health in component_health.items():
if health['error_count'] > 0:
print(f" {name}: {health['error_count']} errors")
Key Features (v3.3.0):
- 100% Async Architecture: All statistics methods use async/await for optimal performance
- Multi-format Export: JSON, Prometheus, CSV, and Datadog formats with data sanitization
- Component-Specific Tracking: Enhanced statistics for all managers with specialized metrics
- Health Monitoring: Intelligent 0-100 health scoring with configurable thresholds
- Performance Optimization: TTL caching, parallel collection, and circular buffers
- Memory Efficiency: Circular buffers and lock-free reads for frequently accessed metrics
- Comprehensive Testing: 45+ tests covering all aspects of the async statistics system
All 58+ indicators work with async data pipelines:
import polars as pl
from project_x_py.indicators import RSI, SMA, MACD, FVG, ORDERBLOCK, WAE
# Get data - multiple ways
data = await client.get_bars("ES", days=30) # Last 30 days
# Or use specific time range (v3.1.5+)
from datetime import datetime
start = datetime(2025, 1, 1, 9, 30)
end = datetime(2025, 1, 10, 16, 0)
data = await client.get_bars("ES", start_time=start, end_time=end)
# Apply traditional indicators
data = data.pipe(SMA, period=20).pipe(RSI, period=14)
# Apply pattern recognition indicators
data_with_fvg = FVG(data, min_gap_size=0.001, check_mitigation=True)
data_with_ob = ORDERBLOCK(data, min_volume_percentile=70)
data_with_wae = WAE(data, sensitivity=150)
# Or use class-based interface
from project_x_py.indicators import OrderBlock, FVG, WAE
ob = OrderBlock()
data_with_ob = ob.calculate(data, use_wicks=True)
- Fair Value Gap (FVG): Identifies price imbalance areas
- Order Block: Detects institutional order zones
- Waddah Attar Explosion (WAE): Strong trend and breakout detection
The examples/
directory contains comprehensive async examples:
- 00_trading_suite_demo.py - Complete TradingSuite demonstration
- 01_basic_client_connection.py - Async authentication and basic operations
- 02_order_management.py - Async order placement and management
- 03_position_management.py - Async position tracking and P&L
- 04_realtime_data.py - Real-time async data streaming
- 05_orderbook_analysis.py - Async market depth analysis
- 06_advanced_orderbook.py - Advanced orderbook analytics
- 06_multi_timeframe_strategy.py - Async multi-timeframe trading
- 07_technical_indicators.py - Using indicators with async data
- 08_order_and_position_tracking.py - Integrated async monitoring
- 09_get_check_available_instruments.py - Interactive async instrument search
- 10_unified_event_system.py - Event-driven trading with EventBus
- 11_simplified_data_access.py - Simplified data access patterns
- 12_simplified_multi_timeframe.py - Multi-timeframe analysis
- 12_simplified_strategy.py - Simplified strategy using auto-initialization
- 13_enhanced_models.py - Enhanced data models demonstration
- 15_order_lifecycle_tracking.py - Complete order lifecycle monitoring
- 15_risk_management.py - Risk management features
- 16_managed_trades.py - ManagedTrade context manager usage
- 16_join_orders.py - Advanced order joining techniques
Use parameters in TradingSuite.create()
Configure caching and memory limits:
# In OrderBook
orderbook = OrderBook(
instrument="ES",
max_trades=10000, # Trade history limit
max_depth_entries=1000, # Depth per side
cache_ttl=300 # 5 minutes
)
# In RealtimeDataManager
data_manager = RealtimeDataManager(
instrument="NQ",
max_bars_per_timeframe=1000,
tick_buffer_size=1000
)
All async operations use typed exceptions with automatic retry and logging:
from project_x_py.exceptions import (
ProjectXAuthenticationError,
ProjectXOrderError,
ProjectXRateLimitError
)
from project_x_py.utils import configure_sdk_logging
# Configure logging for production
configure_sdk_logging(
level=logging.INFO,
format_json=True, # JSON logs for production
log_file="/var/log/projectx/trading.log"
)
try:
async with ProjectX.from_env() as client:
await client.authenticate() # Automatic retry on network errors
except ProjectXAuthenticationError as e:
# Structured error with context
print(f"Authentication failed: {e}")
except ProjectXRateLimitError as e:
# Automatic backoff already attempted
print(f"Rate limit exceeded: {e}")
The SDK uses decorators for consistent error handling:
# All API methods have built-in error handling
@handle_errors("place order")
@retry_on_network_error(max_attempts=3)
@validate_response(required_fields=["orderId"])
async def place_order(self, ...):
# Method implementation
# Error: "PROJECT_X_API_KEY environment variable is required"
# Solution: Set environment variables before running
export PROJECT_X_API_KEY="your_api_key"
export PROJECT_X_USERNAME="your_username"
# Or use config file at ~/.config/projectx/config.json
# Error: "Instrument MNQ not found"
# Solution: Verify instrument symbol is correct
# Common symbols: "MNQ", "MES", "MGC", "ES", "NQ"
# The TradingSuite handles connections automatically
# If you need custom timeout handling:
try:
suite = await TradingSuite.create(
"MNQ",
timeout=30 # Custom timeout in seconds
)
except Exception as e:
print(f"Connection failed: {e}")
# The suite automatically manages memory, but for long-running strategies:
# 1. Use reasonable initial_days (3-7 is usually sufficient)
# 2. The data manager automatically maintains sliding windows
# 3. OrderBook has built-in memory limits
# The SDK handles rate limiting automatically, but if you encounter issues:
# 1. Reduce concurrent API calls
# 2. Add delays between operations
# 3. Use batch operations where available
As of v3.1.1, this project follows strict Semantic Versioning:
- PATCH (x.x.N): Bug fixes only, no API changes
- MINOR (x.N.x): New features, backward compatible, deprecation warnings added
- MAJOR (N.x.x): Breaking changes allowed, deprecated features removed
- Features marked as deprecated will include clear migration instructions
- Deprecated features maintained for at least 2 minor versions
- Removal only occurs in major version releases
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
# Clone repository
git clone https://github.com/yourusername/project-x-py.git
cd project-x-py
# Install with dev dependencies
uv sync
# Run tests
uv run pytest
# Format code
uv run ruff format .
# Lint
uv run ruff check .
This project is licensed under the MIT License - see LICENSE file for details.
This SDK is for educational and development purposes. Trading futures involves substantial risk of loss and is not suitable for all investors. Past performance is not indicative of future results. Always test your strategies thoroughly before using real funds.