Skip to content

Commit

Permalink
test
Browse files Browse the repository at this point in the history
  • Loading branch information
nihui committed Nov 21, 2024
1 parent f4cf6c2 commit f16caff
Show file tree
Hide file tree
Showing 4 changed files with 277 additions and 0 deletions.
73 changes: 73 additions & 0 deletions tools/pnnx/tests/ncnn/test_torchaudio_InverseSpectrogram.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio

class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()

self.s0 = torchaudio.transforms.InverseSpectrogram(n_fft=64, window_fn=torch.hann_window, win_length=44, hop_length=16, pad=0, center=True, normalized='window')
self.s1 = torchaudio.transforms.InverseSpectrogram(n_fft=128, window_fn=torch.hann_window, win_length=128, hop_length=3, pad=0, center=True, onesided=True, normalized=False)
self.s2 = torchaudio.transforms.InverseSpectrogram(n_fft=512, window_fn=torch.hamming_window, win_length=256, hop_length=128, pad=0, center=True, onesided=True, normalized='frame_length')
self.s3 = torchaudio.transforms.InverseSpectrogram(n_fft=1024, window_fn=torch.hamming_window, win_length=512, hop_length=128, pad=0, center=True, onesided=True, normalized=False)

def forward(self, x, y, z, w):
x = torch.view_as_complex(x)
y = torch.view_as_complex(y)
z = torch.view_as_complex(z)
w = torch.view_as_complex(w)
out0 = self.s0(x)
out1 = self.s1(y)
out2 = self.s2(z)
out3 = self.s3(w)
return out0, out1, out2, out3

def test():
net = Model()
net.eval()

torch.manual_seed(0)
x = torch.rand(33, 161, 2)
y = torch.rand(65, 77, 2)
z = torch.rand(257, 8, 2)
w = torch.rand(513, 4, 2)

a = net(x, y, z, w)

# export torchscript
mod = torch.jit.trace(net, (x, y, z, w))
mod.save("test_torchaudio_InverseSpectrogram.pt")

# torchscript to pnnx
import os
os.system("../../src/pnnx test_torchaudio_InverseSpectrogram.pt inputshape=[33,161,2],[65,77,2],[257,8,2],[513,4,2]")

# ncnn inference
import test_torchaudio_InverseSpectrogram_ncnn
b = test_torchaudio_InverseSpectrogram_ncnn.test_inference()

for a0, b0 in zip(a, b):
if not torch.allclose(a0, b0, 1e-4, 1e-4):
return False
return True

if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)
68 changes: 68 additions & 0 deletions tools/pnnx/tests/ncnn/test_torchaudio_Spectrogram.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio

class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()

self.s0 = torchaudio.transforms.Spectrogram(n_fft=64, window_fn=torch.hann_window, win_length=44, hop_length=16, pad=0, center=True, normalized='window', power=1)
self.s1 = torchaudio.transforms.Spectrogram(n_fft=128, window_fn=torch.hann_window, win_length=128, hop_length=3, pad=0, center=False, onesided=True, normalized=False, power=None)
self.s2 = torchaudio.transforms.Spectrogram(n_fft=512, window_fn=torch.hamming_window, win_length=256, hop_length=128, pad=0, center=True, pad_mode='constant', onesided=True, normalized='frame_length', power=2)
self.s3 = torchaudio.transforms.Spectrogram(n_fft=512, window_fn=torch.hamming_window, win_length=512, hop_length=128, pad=32, center=True, onesided=False, normalized=False, power=2)

def forward(self, x, y):
out0 = self.s0(x)
out1 = self.s1(x)
out2 = self.s2(y)
out3 = self.s3(y)
out1 = torch.view_as_real(out1)
return out0, out1, out2, out3

def test():
net = Model()
net.eval()

torch.manual_seed(0)
x = torch.rand(2560)
y = torch.rand(1000)

a = net(x, y)

# export torchscript
mod = torch.jit.trace(net, (x, y))
mod.save("test_torchaudio_Spectrogram.pt")

# torchscript to pnnx
import os
os.system("../../src/pnnx test_torchaudio_Spectrogram.pt inputshape=[2560],[1000]")

# ncnn inference
import test_torchaudio_Spectrogram_ncnn
b = test_torchaudio_Spectrogram_ncnn.test_inference()

for a0, b0 in zip(a, b):
if not torch.allclose(a0, b0, 1e-4, 1e-4):
return False
return True

if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)
69 changes: 69 additions & 0 deletions tools/pnnx/tests/test_torchaudio_InverseSpectrogram.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio

class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()

self.s0 = torchaudio.transforms.InverseSpectrogram(n_fft=64, window_fn=torch.hann_window, win_length=44, hop_length=16, pad=0, center=True, normalized='window')
self.s1 = torchaudio.transforms.InverseSpectrogram(n_fft=128, window_fn=torch.hann_window, win_length=128, hop_length=3, pad=0, center=True, onesided=True, normalized=False)
self.s2 = torchaudio.transforms.InverseSpectrogram(n_fft=512, window_fn=torch.hamming_window, win_length=256, hop_length=128, pad=0, center=True, onesided=True, normalized='frame_length')
self.s3 = torchaudio.transforms.InverseSpectrogram(n_fft=512, window_fn=torch.hamming_window, win_length=512, hop_length=128, pad=0, center=True, onesided=False, normalized=False)

def forward(self, x, y, z, w):
out0 = self.s0(x)
out1 = self.s1(y)
out2 = self.s2(z)
out3 = self.s3(w)
return out0, out1, out2, out3

def test():
net = Model()
net.eval()

torch.manual_seed(0)
x = torch.rand(3, 33, 161, dtype=torch.complex64)
y = torch.rand(1, 65, 77, dtype=torch.complex64)
z = torch.rand(257, 8, dtype=torch.complex64)
w = torch.rand(512, 4, dtype=torch.complex64)

a = net(x, y, z, w)

# export torchscript
mod = torch.jit.trace(net, (x, y, z, w))
mod.save("test_torchaudio_InverseSpectrogram.pt")

# torchscript to pnnx
import os
os.system("../src/pnnx test_torchaudio_InverseSpectrogram.pt inputshape=[3,33,161]c64,[1,65,77]c64,[257,8]c64,[512,4]c64")

# pnnx inference
import test_torchaudio_InverseSpectrogram_pnnx
b = test_torchaudio_InverseSpectrogram_pnnx.test_inference()

for a0, b0 in zip(a, b):
if not torch.allclose(a0, b0, 1e-4, 1e-4):
return False
return True

if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)
67 changes: 67 additions & 0 deletions tools/pnnx/tests/test_torchaudio_Spectrogram.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio

class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()

self.s0 = torchaudio.transforms.Spectrogram(n_fft=64, window_fn=torch.hann_window, win_length=44, hop_length=16, pad=0, center=True, normalized='window', power=1)
self.s1 = torchaudio.transforms.Spectrogram(n_fft=128, window_fn=torch.hann_window, win_length=128, hop_length=3, pad=0, center=False, onesided=True, normalized=False, power=None)
self.s2 = torchaudio.transforms.Spectrogram(n_fft=512, window_fn=torch.hamming_window, win_length=256, hop_length=128, pad=0, center=True, pad_mode='constant', onesided=True, normalized='frame_length', power=2)
self.s3 = torchaudio.transforms.Spectrogram(n_fft=512, window_fn=torch.hamming_window, win_length=512, hop_length=128, pad=32, center=True, onesided=False, normalized=False, power=2)

def forward(self, x, y):
out0 = self.s0(x)
out1 = self.s1(x)
out2 = self.s2(y)
out3 = self.s3(y)
return out0, out1, out2, out3

def test():
net = Model()
net.eval()

torch.manual_seed(0)
x = torch.rand(3, 2560)
y = torch.rand(1000)

a = net(x, y)

# export torchscript
mod = torch.jit.trace(net, (x, y))
mod.save("test_torchaudio_Spectrogram.pt")

# torchscript to pnnx
import os
os.system("../src/pnnx test_torchaudio_Spectrogram.pt inputshape=[3,2560],[1000]")

# pnnx inference
import test_torchaudio_Spectrogram_pnnx
b = test_torchaudio_Spectrogram_pnnx.test_inference()

for a0, b0 in zip(a, b):
if not torch.allclose(a0, b0, 1e-4, 1e-4):
return False
return True

if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)

0 comments on commit f16caff

Please sign in to comment.