Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add rafda to data assimilation library #161

Open
wants to merge 4 commits into
base: test_release
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions doc_source/modules/DAF/Forecasting.rst
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ This page outlines the available time series forecasting functions.
ax2.plot(X_model[1,:],'r', label="Forecast")
ax2.plot(X_meas[1,:], '.b', label="Measurement")
ax2.plot([],[])
ax2.set_title('x', fontsize='x-large')
ax2.set_title('y', fontsize='x-large')
ax2.tick_params(axis='both', which='major', labelsize='x-large')
ax2.set_ylim((-30,30))

Expand All @@ -76,7 +76,7 @@ This page outlines the available time series forecasting functions.
ax3.plot(X_meas[2,:], '.b', label="Measurement")
ax3.plot([],[])
ax3.legend(fontsize='large', loc='upper left')
ax3.set_title('x', fontsize='x-large')
ax3.set_title('z', fontsize='x-large')
ax3.tick_params(axis='both', which='major', labelsize='x-large')
ax3.set_ylim((0,60))

Expand Down
61 changes: 61 additions & 0 deletions docs/_modules/teaspoon/DAF/data_assimilation.html
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,7 @@ <h1>Source code for teaspoon.DAF.data_assimilation</h1><div class="highlight"><p
<span class="kn">from</span> <span class="nn">gudhi.wasserstein</span> <span class="kn">import</span> <span class="n">wasserstein_distance</span>
<span class="kn">from</span> <span class="nn">teaspoon.DAF.forecasting</span> <span class="kn">import</span> <span class="n">get_forecast</span>
<span class="kn">from</span> <span class="nn">teaspoon.DAF.forecasting</span> <span class="kn">import</span> <span class="n">forecast_time</span>
<span class="kn">from</span> <span class="nn">teaspoon.DAF.forecasting</span> <span class="kn">import</span> <span class="n">random_feature_map_model</span>

<span class="k">try</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">tensorflow</span> <span class="k">as</span> <span class="nn">tf</span>
Expand Down Expand Up @@ -293,6 +294,66 @@ <h1>Source code for teaspoon.DAF.data_assimilation</h1><div class="highlight"><p



<div class="viewcode-block" id="rafda">
<a class="viewcode-back" href="../../../modules/DAF/DataAssimilation.html#teaspoon.DAF.data_assimilation.rafda">[docs]</a>
<span class="k">def</span> <span class="nf">rafda</span><span class="p">(</span><span class="n">u_obs</span><span class="p">,</span> <span class="n">Dr</span><span class="p">,</span> <span class="n">Gamma</span><span class="p">,</span> <span class="n">M</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">g</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">w</span><span class="o">=</span><span class="mf">0.005</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="mf">4.0</span><span class="p">,</span> <span class="n">beta</span><span class="o">=</span><span class="mf">4e-5</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Function for generating a RAFDA model based on the method presented in https://doi.org/10.1016/j.physd.2021.132911. </span>

<span class="sd"> Args:</span>
<span class="sd"> u_obs (array): Array of observations (D x N) D is the dimension, N is the number of training points.</span>
<span class="sd"> Dr (int): Reservoir dimension</span>
<span class="sd"> Gamma (array): Observational covariance matrix.</span>
<span class="sd"> M (int): Ensemble size.</span>
<span class="sd"> g (float): Initial random weight ensemble distribution parameter.</span>
<span class="sd"> w (float): Random feature weight matrix distribution width parameter.</span>
<span class="sd"> b (float): Random feature bias vector distribution parameter.</span>
<span class="sd"> beta (float): Ridge regression regularization parameter.</span>
<span class="sd"> seed (int): Random seed (optional)</span>
<span class="sd"> </span>
<span class="sd"> Returns:</span>
<span class="sd"> W_RAFDA (array): Optimal RAFDA model weights.</span>
<span class="sd"> W_in (array): Random weight matrix.</span>
<span class="sd"> b_in (array): Random bias vector.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">D</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">shape</span><span class="p">(</span><span class="n">u_obs</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">N</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">shape</span><span class="p">(</span><span class="n">u_obs</span><span class="p">)[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">W_LR</span><span class="p">,</span> <span class="n">W_in</span><span class="p">,</span> <span class="n">b_in</span> <span class="o">=</span> <span class="n">random_feature_map_model</span><span class="p">(</span><span class="n">u_obs</span><span class="p">,</span> <span class="n">Dr</span><span class="p">,</span> <span class="n">w</span><span class="o">=</span><span class="n">w</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">b</span><span class="p">,</span> <span class="n">beta</span><span class="o">=</span><span class="n">beta</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="n">seed</span><span class="p">)</span>
<span class="n">W_LR</span> <span class="o">=</span> <span class="n">W_LR</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>

<span class="c1"># Sample initial ensemble (u_obs \in R^D)</span>
<span class="n">u_o</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multivariate_normal</span><span class="p">(</span><span class="n">u_obs</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">Gamma</span><span class="p">,</span><span class="n">size</span><span class="o">=</span><span class="n">M</span><span class="p">)</span><span class="o">.</span><span class="n">T</span>
<span class="n">w_o</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multivariate_normal</span><span class="p">(</span><span class="n">W_LR</span><span class="p">,</span> <span class="n">g</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="n">D</span><span class="o">*</span><span class="n">Dr</span><span class="p">),</span><span class="n">size</span><span class="o">=</span><span class="n">M</span><span class="p">)</span><span class="o">.</span><span class="n">T</span>
<span class="n">Z_a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">([</span><span class="n">u_o</span><span class="p">,</span><span class="n">w_o</span><span class="p">])</span>
<span class="n">H</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">hstack</span><span class="p">([</span><span class="n">np</span><span class="o">.</span><span class="n">identity</span><span class="p">(</span><span class="n">D</span><span class="p">),</span><span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">D</span><span class="p">,</span><span class="n">D</span><span class="o">*</span><span class="n">Dr</span><span class="p">))])</span>
<span class="n">Z_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">D</span><span class="o">+</span><span class="n">D</span><span class="o">*</span><span class="n">Dr</span><span class="p">,</span> <span class="n">M</span><span class="p">))</span>

<span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">N</span><span class="p">):</span>
<span class="c1"># Ensemble steps</span>
<span class="nb">print</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
<span class="n">phi</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">tanh</span><span class="p">(</span><span class="n">W_in</span> <span class="o">@</span> <span class="n">Z_a</span><span class="p">[:</span><span class="n">D</span><span class="p">,:]</span> <span class="o">+</span> <span class="n">b_in</span><span class="p">)</span>
<span class="n">W_a_prev</span> <span class="o">=</span> <span class="n">Z_a</span><span class="p">[</span><span class="n">D</span><span class="p">:,:]</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="n">D</span><span class="p">,</span> <span class="n">Dr</span><span class="p">,</span> <span class="n">M</span><span class="p">))</span>

<span class="n">W_a_flat</span> <span class="o">=</span> <span class="n">W_a_prev</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">W_a_prev</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">W_a_prev</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">M</span><span class="p">)</span>
<span class="n">u_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">&#39;ijk,jk-&gt;ik&#39;</span><span class="p">,</span> <span class="n">W_a_prev</span><span class="p">,</span> <span class="n">phi</span><span class="p">)</span>

<span class="n">Z_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">u_f</span><span class="p">,</span> <span class="n">W_a_flat</span><span class="p">))</span>
<span class="n">Z_f_mean</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">Z_f</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">keepdims</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">Z_f_hat</span> <span class="o">=</span> <span class="n">Z_f</span> <span class="o">-</span> <span class="n">Z_f_mean</span>

<span class="n">P_f</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span><span class="o">/</span><span class="p">(</span><span class="n">M</span><span class="o">-</span><span class="mi">1</span><span class="p">))</span><span class="o">*</span><span class="n">Z_f_hat</span><span class="nd">@Z_f_hat</span><span class="o">.</span><span class="n">T</span>
<span class="n">Uo</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">tile</span><span class="p">(</span><span class="n">u_obs</span><span class="p">[:,</span><span class="n">n</span><span class="p">][:,</span> <span class="n">np</span><span class="o">.</span><span class="n">newaxis</span><span class="p">],</span><span class="n">M</span><span class="p">)</span> <span class="o">-</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">Gamma</span><span class="p">)</span><span class="nd">@np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="p">(</span><span class="n">D</span><span class="p">,</span><span class="n">M</span><span class="p">))</span>

<span class="n">Z_a</span> <span class="o">=</span> <span class="n">Z_f</span> <span class="o">-</span> <span class="n">P_f</span><span class="nd">@H</span><span class="o">.</span><span class="n">T</span><span class="nd">@np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">H</span><span class="nd">@P_f@H</span><span class="o">.</span><span class="n">T</span><span class="o">+</span><span class="n">Gamma</span><span class="p">)</span><span class="o">@</span><span class="p">(</span><span class="n">H</span><span class="nd">@Z_f</span><span class="o">-</span><span class="n">Uo</span><span class="p">)</span>
<span class="n">Z_f</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span><span class="n">Z_a</span><span class="p">)</span>

<span class="n">W_RAFDA</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">Z_a</span><span class="p">[</span><span class="n">D</span><span class="p">:,</span> <span class="p">:],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="n">D</span><span class="p">,</span><span class="n">Dr</span><span class="p">))</span>

<span class="k">return</span> <span class="n">W_RAFDA</span><span class="p">,</span> <span class="n">W_in</span><span class="p">,</span> <span class="n">b_in</span></div>







Expand Down
2 changes: 1 addition & 1 deletion docs/_modules/teaspoon/TDA/Distance.html
Original file line number Diff line number Diff line change
Expand Up @@ -219,7 +219,7 @@ <h1>Source code for teaspoon.TDA.Distance</h1><div class="highlight"><pre>

<span class="c1"># Get distances between all pairs of off-diagonal points</span>
<span class="c1"># When we fix this for more q options,</span>
<span class="k">if</span> <span class="n">q</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">infty</span><span class="p">:</span>
<span class="k">if</span> <span class="n">q</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">inf</span><span class="p">:</span>
<span class="n">metric</span> <span class="o">=</span> <span class="s1">&#39;chebyshev&#39;</span>
<span class="k">elif</span> <span class="n">q</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">metric</span> <span class="o">=</span> <span class="s1">&#39;l1&#39;</span>
Expand Down
4 changes: 2 additions & 2 deletions docs/_sources/modules/DAF/Forecasting.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ This page outlines the available time series forecasting functions.
ax2.plot(X_model[1,:],'r', label="Forecast")
ax2.plot(X_meas[1,:], '.b', label="Measurement")
ax2.plot([],[])
ax2.set_title('x', fontsize='x-large')
ax2.set_title('y', fontsize='x-large')
ax2.tick_params(axis='both', which='major', labelsize='x-large')
ax2.set_ylim((-30,30))

Expand All @@ -76,7 +76,7 @@ This page outlines the available time series forecasting functions.
ax3.plot(X_meas[2,:], '.b', label="Measurement")
ax3.plot([],[])
ax3.legend(fontsize='large', loc='upper left')
ax3.set_title('x', fontsize='x-large')
ax3.set_title('z', fontsize='x-large')
ax3.tick_params(axis='both', which='major', labelsize='x-large')
ax3.set_ylim((0,60))

Expand Down
Binary file modified docs/doctrees/environment.pickle
Binary file not shown.
Binary file modified docs/doctrees/modules/DAF/DataAssimilation.doctree
Binary file not shown.
Binary file modified docs/doctrees/modules/DAF/Forecasting.doctree
Binary file not shown.
Binary file modified docs/doctrees/modules/SP/stoch_bif.doctree
Binary file not shown.
Binary file modified docs/doctrees/modules/TDA/fast_zigzag.doctree
Binary file not shown.
6 changes: 4 additions & 2 deletions docs/genindex.html
Original file line number Diff line number Diff line change
Expand Up @@ -571,6 +571,8 @@ <h2 id="R">R</h2>
<table style="width: 100%" class="indextable genindextable"><tr>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="modules/MakeData/DynSysLib/autonomous_dissipative_flows.html#teaspoon.MakeData.DynSysLib.autonomous_dissipative_flows.rabinovich_frabrikant_attractor">rabinovich_frabrikant_attractor() (in module teaspoon.MakeData.DynSysLib.autonomous_dissipative_flows)</a>
</li>
<li><a href="modules/DAF/DataAssimilation.html#teaspoon.DAF.data_assimilation.rafda">rafda() (in module teaspoon.DAF.data_assimilation)</a>
</li>
<li><a href="modules/DAF/Forecasting.html#teaspoon.DAF.forecasting.random_feature_map_model">random_feature_map_model() (in module teaspoon.DAF.forecasting)</a>
</li>
Expand All @@ -579,11 +581,11 @@ <h2 id="R">R</h2>
<li><a href="modules/MakeData/DynSysLib/driven_dissipative_flows.html#teaspoon.MakeData.DynSysLib.driven_dissipative_flows.rayleigh_duffing_oscillator">rayleigh_duffing_oscillator() (in module teaspoon.MakeData.DynSysLib.driven_dissipative_flows)</a>
</li>
<li><a href="modules/MakeData/DynSysLib/noise_models.html#teaspoon.MakeData.DynSysLib.noise_models.rayleigh_noise">rayleigh_noise() (in module teaspoon.MakeData.DynSysLib.noise_models)</a>
</li>
<li><a href="modules/SP/network.html#teaspoon.SP.network_tools.remove_zeros">remove_zeros() (in module teaspoon.SP.network_tools)</a>
</li>
</ul></td>
<td style="width: 33%; vertical-align: top;"><ul>
<li><a href="modules/SP/network.html#teaspoon.SP.network_tools.remove_zeros">remove_zeros() (in module teaspoon.SP.network_tools)</a>
</li>
<li><a href="modules/TDA/persistence.html#teaspoon.TDA.Persistence.removeInfiniteClasses">removeInfiniteClasses() (in module teaspoon.TDA.Persistence)</a>
</li>
<li><a href="modules/SP/misc.html#teaspoon.SP.adaptivePart.Partitions.return_partition_clustering">return_partition_clustering() (teaspoon.SP.adaptivePart.Partitions method)</a>
Expand Down
Loading