Skip to content

[NeurIPS 2023] XAGen: 3D Expressive Human Avatars Generation

License

Notifications You must be signed in to change notification settings

TatsuHaguioC23/xagen

 
 

Repository files navigation

XAGen: 3D Expressive Human Avatars Generation

Zhongcong Xu · Jianfeng Zhang · Jun Hao Liew · Jiashi Feng · Mike Zheng Shou

Paper PDF Project Page

⚒️ Installation

prerequisites: python>=3.7, CUDA>=11.3.

Install with conda activated:

source ./install_env.sh

Follow the instructions in this repo and website to download parametric models and place the parametric models as follow:

xagen
|----smplx
  |----assets
    |----MANO_SMPLX_vertex_ids.pkl
    |----SMPL-X__FLAME_vertex_ids.npy
    |----smplx_canonical_body_sdf.pkl
    |----smplx_extra_joints.yaml
    |----SMPLX_NEUTRAL_2020.npz
    |----SMPLX_to_J14.pkl

🏃‍♂️ Getting Started

Due to the copyright issue, we are unable to release all the processed datasets, we provide a sampled dataset and all the dataset labels for inference. Please download the sampled datasets and pretrained checkpoints from release. Then modify the path to data and checkpoints in the scripts. Run training:

bash dist_train.sh

Run inference:

bash inference.sh

Citing

If you find our work useful, please consider citing:

@inproceedings{XAGen2023,
    title={XAGen: 3D Expressive Human Avatars Generation},
    author={Xu, Zhongcong and Zhang, Jianfeng and Liew, Junhao and Feng, Jiashi and Shou, Mike Zheng},
    booktitle={NeurIPS},
    year={2023}
}

About

[NeurIPS 2023] XAGen: 3D Expressive Human Avatars Generation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.8%
  • Cuda 6.1%
  • C++ 1.9%
  • Shell 0.2%