Skip to content

TangHuihao/FastCuCodeML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FastCuCodeML

This package is an speed optimization version of CuCodeML (https://github.com/rmingming/CuCodeML)

The source code was written by Ziheng Yang (https://github.com/abacus-gene/paml)

Instructions for compiling in Ubuntu 18.04

you need install CUDA first

step 1:

    your_nvcc_localation/nvcc -arch=sm_75 -DCUDA -DSINGLE_GPU_ID=0 -O3 -c cuda-codeml.cu

this is mine RTX2070 sm arch(sm_75) and you need change based on your GPU

step 2:

    cc -DCUDA -DSSE -O3 -funroll-loops -fomit-frame-pointer -c tools.c
    cc -DCUDA -DSSE -O3 -funroll-loops -fomit-frame-pointer -c codeml.c

step 3:

    cc -DCUDA -DSSE -O3 -funroll-loops -fomit-frame-pointer cuda-codeml.o tools.o codeml.o -(your_cuda_lib64_location)lib64 -(your_cuda_lib_location)lib -lcudart -lstdc++ -lm -o FastCuCodeML

Then run the program with the following command: your-path/FastCuCodeML

We have tested this package in Windows10 using Visual Studio and Ubuntu 18.04 LTS

image Speed test comparing to CuCodeML

About

An optimization version of CuCodeML

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published