-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathkitti_publisher.cpp
executable file
·1341 lines (1126 loc) · 62.7 KB
/
kitti_publisher.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//ROS2
#include "rclcpp/rclcpp.hpp"
#include "sensor_msgs/msg/image.hpp"
#include "sensor_msgs/msg/point_cloud2.hpp"
//OpenCV
#include <cv_bridge/cv_bridge.h>
#include <opencv2/core/core.hpp>
#include <opencv2/imgcodecs.hpp>
#include<fstream>
#include<iomanip>
#include <chrono>
// User Defined Types
struct CalibMatrices{cv::Mat P0, P1, P2, P3, Tr;};
class KittiPublisherNode : public rclcpp::Node{
public:
KittiPublisherNode() : Node("kitti_publisher"){
// Parameters
// To set parameters append "--ros-args -p ParamName:=Value" to the call
// e.g. ros2 run depth_map_creator kittipublisher --ros-args -p PublishFrequency:=10.0 -p SaveDenseDepth:=true -p CreateOverlay:=true -p SequencePath:=/home/ << Path to Dataset >>/dataset/sequences/00/
this->declare_parameter("SequencePath", "");
this->declare_parameter("PublishFrequency", 10.0);
this->declare_parameter("SaveSparseDepth", false);
this->declare_parameter("SaveDenseDepth", false);
this->declare_parameter("CreateOverlay", false);
this->declare_parameter("optDataset", "Odometry");
SequencePath = this->get_parameter("SequencePath").as_string();
Frequency = this->get_parameter("PublishFrequency").as_double();
SaveSparseDepth = this->get_parameter("SaveSparseDepth").as_bool();
SaveDenseDepth = this->get_parameter("SaveDenseDepth").as_bool();
CreateOverlay = this->get_parameter("CreateOverlay").as_bool();
optDataset = this->get_parameter("optDataset").as_string();
// Publishers
pub_image_0 = this->create_publisher<sensor_msgs::msg::Image>("image_0", 10);
pub_image_1 = this->create_publisher<sensor_msgs::msg::Image>("image_1", 10);
pub_image_2 = this->create_publisher<sensor_msgs::msg::Image>("image_2", 10);
pub_image_3 = this->create_publisher<sensor_msgs::msg::Image>("image_3", 10);
// pub_lidar = this->create_publisher<sensor_msgs::msg::PointCloud2>("velodyne", 10);
pub_depthmap_0 = this->create_publisher<sensor_msgs::msg::Image>("depthmap/sparse/image_0", 10);
pub_depthmap_1 = this->create_publisher<sensor_msgs::msg::Image>("depthmap/sparse/image_1", 10);
pub_depthmap_2 = this->create_publisher<sensor_msgs::msg::Image>("depthmap/sparse/image_2", 10);
pub_depthmap_3 = this->create_publisher<sensor_msgs::msg::Image>("depthmap/sparse/image_3", 10);
// Timer
timer = this->create_wall_timer(std::chrono::milliseconds((int)(1000/Frequency)), std::bind(&KittiPublisherNode::publishFrame, this));
// Terminal Info
RCLCPP_INFO(this->get_logger(), "All publishers have been started.");
// RCLCPP_INFO(this->get_logger(), "Processing Sequence: " + SequencePath);
// Read Calib
LoadTimestamps(SequencePath, vTimestamps);
std::cout << "Done Loading Timestamps" << std::endl;
// Check options
if (optDataset != "Odometry" && optDataset != "Completion" && optDataset != "Virtual"){
std::cerr << "Invalid Dataset Option! Please chose Odometry, Completion or Virtual." << std::endl;
}
// Calibration
if (optDataset == "Odometry"){
ReadKittiCalib (SequencePath + "calib.txt" , SequenceCalibration);
ProjMat0 = CalcProjectionMatrix (0, SequenceCalibration);
ProjMat1 = CalcProjectionMatrix (1, SequenceCalibration);
ProjMat2 = CalcProjectionMatrix (2, SequenceCalibration);
ProjMat3 = CalcProjectionMatrix (3, SequenceCalibration);
}
// Increment Frame counter, if working with completion dataset
if (optDataset == "Completion"){
FrameCounter = 5; // Depth only available from 5th frame
}
// Create Output Folders
if (SaveDenseDepth){
system(("mkdir " + SequencePath + "/image_0_Depth").c_str());
// system(("mkdir " + SequencePath + "/image_1_Depth").c_str());
// system(("mkdir " + SequencePath + "/image_2_Depth").c_str());
// system(("mkdir " + SequencePath + "/image_3_Depth").c_str());
}
if (CreateOverlay){
system(("mkdir " + SequencePath + "/image_0_Depth_Overlay").c_str());
// system(("mkdir " + SequencePath + "/image_1_Depth_Overlay").c_str());
// system(("mkdir " + SequencePath + "/image_2_Depth_Overlay").c_str());
// system(("mkdir " + SequencePath + "/image_3_Depth_Overlay").c_str());
}
}
private:
// ===============================================
// Subscriber and Publisher; Processing Call
void publishFrame(){
// Update Frame Name
FrameName.str(std::string()); // Clear
if (optDataset == "Odometry"){
FrameName << std::setfill('0') << std::setw(6) << FrameCounter; // Odometry Dataset
// Load Images
LoadImageGray (SequencePath + "/image_0/" + FrameName.str() + ".png", img_0); // Odometry Dataset
// LoadImageGray (SequencePath + "/image_1/" + FrameName.str() + ".png", img_1); // Odometry Dataset
// LoadImageGray (SequencePath + "/image_2/" + FrameName.str() + ".png", img_2); // Odometry Dataset
// LoadImageGray (SequencePath + "/image_3/" + FrameName.str() + ".png", img_3); // Odometry Dataset
}else if (optDataset == "Completion"){
FrameName << std::setfill('0') << std::setw(10) << FrameCounter; // Depth Completion Dataset
// Load Images
LoadImageGray (SequencePath + "/image_00/data/" + FrameName.str() + ".png", img_0); // Depth Completion Dataset
LoadImageGray (SequencePath + "/image_01/data/" + FrameName.str() + ".png", img_1); // Depth Completion Dataset
LoadImageGray (SequencePath + "/image_02/data/" + FrameName.str() + ".png", img_2); // Depth Completion Dataset
LoadImageGray (SequencePath + "/image_03/data/" + FrameName.str() + ".png", img_3); // Depth Completion Dataset
}else if (optDataset == "Virtual"){
FrameName << std::setfill('0') << std::setw(5) << FrameCounter; // Virtual Dataset
// Load Images
LoadImageGray (SequencePath + "/rgb/Camera_0/rgb_" + FrameName.str() + ".jpg", img_0); // Virtual KITTI
}
// Load Pointcloud
if (optDataset == "Odometry"){
LoadPointcloudBinaryMat(SequencePath + "/velodyne/" + FrameName.str() + ".bin", pcd); // Odometry Dataset
// Do Projection of PCD
// Start Timer
// std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
//Projection
ProjectPointcloudToImage (ProjMat0, img_0, pcd, depthmap_0);
// ProjectPointcloudToImage (ProjMat1, img_1, pcd, depthmap_1);
// ProjectPointcloudToImage (ProjMat2, img_2, pcd, depthmap_2);
// ProjectPointcloudToImage (ProjMat3, img_3, pcd, depthmap_3);
// End Timer, calc required time and output
// std::chrono::steady_clock::time_point end1 = std::chrono::steady_clock::now();
// std::cout << "Projection took:" << std::chrono::duration_cast<std::chrono::milliseconds>(end1 - begin).count() << " ms" << std::endl;
}
// LoadPointcloudBinaryMat(SequencePath + "/velodyne_points/data/" + FrameName.str() + ".bin", pcd); // Depth Completion Dataset -> Default: Load Sparse Depthmap
// Alternatively for Depth Completion Dataset: Load already projected sparse depth map
// Caution: Only exists for image 2 and image 3
if (optDataset == "Completion"){
LoadImageGray (SequencePath + "/proj_depth/velodyne_raw/image_02/" + FrameName.str() + ".png", depthmap_2); // Depth Completion Dataset only
// LoadImageGray (SequencePath + "/proj_depth/velodyne_raw/image_02/" + FrameName.str() + ".png", depthmap_3); // Depth Completion Dataset only
depthmap_2.convertTo(depthmap_2, CV_16UC1, 65535/255); // Format Change and scaling required to work within this environment
// depthmap_3.convertTo(depthmap_2, CV_16UC1, 65535/255); // Format Change and scaling required to work within this environment
}else if (optDataset == "Virtual"){
LoadDepthmap (SequencePath + "/Camera_0_Depth_Sparse/depth_" + FrameName.str() + ".png", depthmap_0); // Virtual Dataset only
}
// Shutdown
if ((depthmap_0.empty() && optDataset == "Odometry") || (depthmap_2.empty() && optDataset == "Completion") || (depthmap_0.empty() && optDataset == "Virtual")){ // TODO exit for odometry
// End execution if end is reached
if (FrameCounter > (int) vTimestamps.size()){
std::cout << "=============" << std::endl;
std::cout << "Avg Time: " << AvgTime << std::endl;
std::cout << "=============" << std::endl;
rclcpp::shutdown();
}
std::cout << "Could not load DepthMap " << FrameName.str() << std::endl;
FrameCounter++;
return;
}
// Upsampling Timer Start
std::chrono::steady_clock::time_point TStartUpsampling = std::chrono::steady_clock::now();
// Dilation
// DialateDepthmapInverted(depthmap_0, "Diamond", 5,5);
// DialateDepthmap(depthmap_1, "Rectangle", 5, 5);
// DialateDepthmap(depthmap_2, "Rectangle",3,3);
// DialateDepthmap(depthmap_3, "Rectangle", 5, 5);
// DialateDepthmapInverted(depthmap_2, "Diamond", 5,5);
// DialateDepthmap(depthmap_2, "Diamond",3,3);
// FillPixels_nxn (depthmap_2, 3);
// Inverted Dilation
DialateDepthmapInverted(depthmap_0, "Diamond", 5,5);
// DialateDepthmapInverted(depthmap_1, "Diamond", 7,7);
// DialateDepthmapInverted(depthmap_2, "Diamond", 5,5);
// DialateDepthmapInverted(depthmap_3, "Diamond", 7,7);
// Upsampling - Nearest Neighbor
// NearestNeighbor (depthmap_0, 7);
// NearestNeighbor (depthmap_1, 7);
// NearestNeighbor (depthmap_2, 3);
// NearestNeighbor (depthmap_3, 7);
// Mean Filtering
// FillPixels_nxn (depthmap_0, 5);
// FillPixels_nxn (depthmap_1, 10);
// FillPixels_nxn (depthmap_2, 5);
// FillPixels_nxn (depthmap_3, 10);
// Edge Preserving Nearest Neighbor
// EdgePreservingNearestNeighbor(depthmap_0, img_0, 5);
// EdgePreservingNearestNeighbor(depthmap_1, img_1, 5);
// EdgePreservingNearestNeighbor(depthmap_2, img_2, 7);
// EdgePreservingNearestNeighbor(depthmap_3, img_3, 5);
// Fill Upper Region
// FillUpperRegion(depthmap_0);
// FillUpperRegion(depthmap_1);
// FillUpperRegion(depthmap_2);
// FillUpperRegion(depthmap_3);
// Column Interpolation
// interpolation_cols(depthmap_0);
// interpolation_cols(depthmap_1);
// interpolation_cols(depthmap_2);
// interpolation_cols(depthmap_3);
// Row Interpolation
// interpolation_rows(depthmap_0);
// interpolation_rows(depthmap_1);
// interpolation_rows(depthmap_2);
// interpolation_rows(depthmap_3);
// Column Extrapolation Upwards
// ExtrapolateColsUpwards(depthmap_2);
// Average Blur
// AverageBlur(depthmap_0, 10);
// AverageBlur(depthmap_1, 10);
// AverageBlur(depthmap_2, 10);
// AverageBlur(depthmap_3, 10);
// Bilateral Filter
// BilateralFilter(depthmap_0, 5, 75, 50);
// BilateralFilter(depthmap_1, 5, 75, 50);
// BilateralFilter(depthmap_2, 5, 75, 50);
// BilateralFilter(depthmap_3, 5, 75, 50);
// IPBasic
// IPBasic(depthmap_0, 100, 256, "Diamond", 5, true, "Bilateral");
// IPBasic(depthmap_1, 100, 256, "Diamond", 5, true, "Bilateral");
// IPBasic(depthmap_2, 100, 256, "Diamond", 5, true, "Bilateral");
// IPBasic(depthmap_3, 100, 256, "Diamond", 5, true, "Bilateral");
// End Timer, calc required time and output
std::chrono::steady_clock::time_point TEndUpsamling = std::chrono::steady_clock::now();
// std::cout << "Upsampling took:" << std::chrono::duration_cast<std::chrono::milliseconds>(TEndUpsamling - TStartUpsampling).count() << " ms" << std::endl;
// in depth dataset first frame is 5
float TimeForFrame = std::chrono::duration_cast<std::chrono::milliseconds>(TEndUpsamling - TStartUpsampling).count();
AvgTime = (AvgTime * (FrameCounterTime) + TimeForFrame) / (FrameCounterTime+1);
FrameCounterTime ++;
// Save to File
if (SaveDenseDepth) {
if (!depthmap_0.empty()){
SaveDepthmapToFile (depthmap_0, "image_0_Depth");
}
if (!depthmap_1.empty()){
SaveDepthmapToFile (depthmap_1, "image_1_Depth");
}
if (!depthmap_2.empty()){
SaveDepthmapToFile (depthmap_2, "image_2_Depth");
}
if (!depthmap_3.empty()){
SaveDepthmapToFile (depthmap_3, "image_3_Depth");
}
}
// Create Overlay
if (CreateOverlay){
if (!depthmap_0.empty() && !img_0.empty()){
ImageDepthmapOverlay(img_0, depthmap_0, Overlay_0, OverlayGain, 0);
}
if (!depthmap_1.empty() && !img_1.empty()){
ImageDepthmapOverlay(img_1, depthmap_1, Overlay_1, OverlayGain, 1);
}
if (!depthmap_2.empty() && !img_2.empty()){
ImageDepthmapOverlay(img_2, depthmap_2, Overlay_2, OverlayGain, 2);
}
if (!depthmap_3.empty() && !img_3.empty()){
ImageDepthmapOverlay(img_3, depthmap_3, Overlay_3, OverlayGain, 3);
}
}
// ROS2 Interface
// Create Messages
// convert_frame_to_message(img_0, msg_image_0);
// convert_frame_to_message(img_1, msg_image_1);
// convert_frame_to_message(img_2, msg_image_2);
// convert_frame_to_message(img_3, msg_image_3);
// convert_frame_to_message(depthmap_0, msg_depthmap_0);
// convert_frame_to_message(depthmap_1, msg_depthmap_1);
// convert_frame_to_message(depthmap_2, msg_depthmap_2);
// convert_frame_to_message(depthmap_3, msg_depthmap_3);
// convert_pcd_to_message(pcd, msg_pcd);
// Publish
// pub_image_0->publish(msg_image_0);
// pub_image_1->publish(msg_image_1);
// pub_image_2->publish(msg_image_2);
// pub_image_3->publish(msg_image_3);
// pub_depthmap_0->publish(msg_depthmap_0);
// pub_depthmap_1->publish(msg_depthmap_1);
// pub_depthmap_2->publish(msg_depthmap_2);
// pub_depthmap_3->publish(msg_depthmap_3);
// pub_lidar->publish(msg_pcd);
// Feedback
// RCLCPP_INFO(this->get_logger(), "Published Frame " + FrameName.str());
// Increment Counter
FrameCounter++;
}
// ===========================================================================================================================
// ===========================================================================================================================
// KITTI SPECIFIC FUNCTIONS
// ===========================================================================================================================
// ===========================================================================================================================
bool LoadTimestamps (const std::string strPathToSequence, std::vector<double> &vTimestamps){
using namespace std;
cout << "Start Loading TimeStamps" << endl;
ifstream fTimes;
std::string strPathTimeFile;
if (optDataset == "Odometry"){
strPathTimeFile = strPathToSequence + "/times.txt"; // Odometry KITTI
} else if (optDataset == "Completion"){
strPathTimeFile = strPathToSequence + "/image_02/timestamps.txt"; // Depth Completion KITTI
} else if (optDataset == "Virtual"){
strPathTimeFile = strPathToSequence + "/timestamps.txt"; // Virtual
}
fTimes.open(strPathTimeFile);
if (fTimes.is_open()){
cout << strPathTimeFile << endl;
while (!fTimes.eof()){
string s;
getline(fTimes, s);
if (!s.empty()){
stringstream ss;
ss << s;
double t;
ss >> t;
vTimestamps.push_back(t);
}
}
return true;
}
std::cout << "Could not open timestamps file: " << strPathTimeFile << std::endl;
return false;
}
bool LoadImageGray (const std::string& FilePath, cv::Mat& img){
//Reads an image to a cv::Mat object and returns true in case it was sucessful.
// Load Image
img = cv::imread(FilePath, cv::IMREAD_GRAYSCALE); // Load an image
img.convertTo(img, CV_16SC1);
// Check if loading was sucessful
if(img.empty()){
std::cerr << "Could not open or find the image: " << FilePath << std::endl;
return false;
}
// cout << "Read Grayscale Image with resolution " << img.cols << " x " << img.rows << endl;
return true;
}
bool LoadDepthmap (const std::string& FilePath, cv::Mat& img){
//Reads an image to a cv::Mat object and returns true in case it was sucessful.
// Load Image
img = cv::imread(FilePath, cv::IMREAD_UNCHANGED); // Load an image
// Check if loading was sucessful
if(img.empty()){
std::cerr << "Could not open or find the image: " << FilePath << std::endl;
return false;
}
// cout << "Read Grayscale Image with resolution " << img.cols << " x " << img.rows << endl;
return true;
}
bool LoadImageRGB (const std::string& FilePath, cv::Mat& img){
//Reads an image to a cv::Mat object and returns true in case it was sucessful.
// Load Image
img = cv::imread(FilePath, cv::IMREAD_COLOR); // Load an image
img.convertTo(img, CV_8UC3);
// Check if loading was sucessful
if(img.empty()){
std::cerr << "Could not open or find the image: " << FilePath << std::endl;
return false;
}
// std::cout << "Read RGB Image with resolution " << img.cols << " x " << img.rows << std::endl;
return true;
}
std::string mat_type2encoding(int mat_type){
switch (mat_type) {
case CV_8UC1:
return "mono8";
case CV_8UC3:
return "bgr8";
case CV_16SC1:
return "mono16";
case CV_16U:
return "mono16";
case CV_8UC4:
return "rgba8";
default:
throw std::runtime_error("Unsupported encoding type");
}
}
void convert_frame_to_message(const cv::Mat & frame, sensor_msgs::msg::Image & msg){
// copy cv information into ros message
msg.height = frame.rows;
msg.width = frame.cols;
msg.encoding = mat_type2encoding(frame.type()); //"mono16"
msg.step = static_cast<sensor_msgs::msg::Image::_step_type>(frame.step);
size_t size = frame.step * frame.rows;
msg.data.resize(size);
memcpy(&msg.data[0], frame.data, size);
msg.header.frame_id = "map";
msg.header.stamp = this->now();
}
bool LoadPointcloudBinaryMat(const std::string& FilePath, cv::Mat& point_cloud){
// Code is mainly copied from the Readme of Kitti Odometry Dataset
// From there on I (Martin), adapted the code for my purposes (save as cv::Mat not as vector)
// Initialization
int32_t num = 1000000; // maximum Number of points to allocate
float* data = (float*) malloc(num * sizeof(float));
float* px = data + 0;
float* py = data + 1;
float* pz = data + 2;
float* pr = data + 3;
// load point cloud from file
std::FILE* stream;
stream = fopen(FilePath.c_str(), "rb");
// stream = fopen("/home/martin/data/datasets/03_KITTI/03_Odometry/dataset/sequences/02//velodyne/000043.png", "rb");
// stream = fopen("/home/martin/data/datasets/03_KITTI/03_Odometry/dataset/sequences/02//velodyne/000043.png", "rb");
// Check if file was sucessfully opended
if (!stream) {
std::cerr << "Input error when loading Lidar scan: " << FilePath.c_str() << std::endl;
point_cloud = cv::Mat::zeros(cv::Size(1, 4), CV_64F);
return false;
}
// Save data to variable
num = fread(data, sizeof(float), num, stream)/4;
// Format data as desired
// Mat point_cloud;
point_cloud = cv::Mat::zeros(cv::Size(num, 4), CV_64F);
for (int32_t i = 0; i < num; i++) {
point_cloud.at<double>(0, i) = (double)*px;
point_cloud.at<double>(1, i) = (double)*py;
point_cloud.at<double>(2, i) = (double)*pz;
point_cloud.at<double>(3, i) = (double)1;
px+=4; py+=4; pz+=4; pr+=4;
}
// Close Stream and Free Memory
fclose(stream);
free(data);
// Feedback and return
// std::cout << "Read Pointcloud with number of points: " << num << std::endl;
return true;
}
bool ReadKittiCalib (const std::string& FilePath, CalibMatrices& SequenceCalibration){
// Reads a calib.txt file in the format of the Kitti Data and stores the projection matrices in a cv::Mat.
std::ifstream CalibFile;
// Open file
CalibFile.open(FilePath);
if (!CalibFile){
throw std::runtime_error("Could not open Calibration file in path: " + FilePath);
}
// Go trough the file line by line
int max_rows = 1000;
int cnt = 0;
while (!CalibFile.eof()){
// Abort if more than max_rows were read
if (cnt > max_rows){
break;
}else{
cnt++;
}
// Get a line from calib file
std::string s;
getline(CalibFile, s);
if (!s.empty()){
// Split Line into "words" split by a space
std::vector<std::string> line;
std::string word = "";
for (auto c : s){
if (c == ' '){
line.push_back(word);
word = "";
}else{
word = word + c;
}
}
line.push_back(word); // Last word in line
// Read which Matrix is defined in that line and obtain a pointer to that matrix
cv::Mat* CurrentMatrix;
int cols;
if (line.at(0).compare("P0:") == 0){
CurrentMatrix = &SequenceCalibration.P0;
*CurrentMatrix = cv::Mat::zeros(cv::Size(4, 3), CV_64F);
cols = 4;
}else if (line.at(0).compare("P1:") == 0){
CurrentMatrix = &SequenceCalibration.P1;
*CurrentMatrix = cv::Mat::zeros(cv::Size(4, 3), CV_64F);
cols = 4;
}else if (line.at(0).compare("P2:") == 0){
CurrentMatrix = &SequenceCalibration.P2;
*CurrentMatrix = cv::Mat::zeros(cv::Size(4, 3), CV_64F);
cols = 4;
}else if (line.at(0).compare("P3:") == 0){
CurrentMatrix = &SequenceCalibration.P3;
*CurrentMatrix = cv::Mat::zeros(cv::Size(4, 3), CV_64F);
cols = 4;
}else if (line.at(0).compare("Tr:") == 0){
CurrentMatrix = &SequenceCalibration.Tr;
*CurrentMatrix = cv::Mat::zeros(cv::Size(4, 4), CV_64F);
cols = 4;
//Tr e [3 x 4] -> add a "1" at (3,3) and fill rest of row with "0"
//to make it e [4 x 4] for multiplication with Pi Matrices
CurrentMatrix->at<double>(3, 0) = 0;
CurrentMatrix->at<double>(3, 1) = 0;
CurrentMatrix->at<double>(3, 2) = 0;
CurrentMatrix->at<double>(3, 3) = 1;
}else{
continue;
}
// Fill the Calibration Matrix referred to in that specific line
for (int i = 1; i < (int)line.size(); i++){
// Get indices
int col = (i-1) % cols;
int row = (i-1) / cols;
// Convert word to a double and save it in the correct location
CurrentMatrix->at<double>(row, col) = std::stod(line.at(i)); //stod converts string to double
}
}
}
return true;
}
// ===========================================================================================================================
// ===========================================================================================================================
// PROJECTION
// ===========================================================================================================================
// ===========================================================================================================================
cv::Mat CalcProjectionMatrix (const int& CameraId, const CalibMatrices& SequenceCalibration){
cv::Mat ProjMat {};
switch (CameraId){
case 0:
ProjMat = SequenceCalibration.P0 * SequenceCalibration.Tr;
break;
case 1:
ProjMat = SequenceCalibration.P1 * SequenceCalibration.Tr;
break;
case 2:
ProjMat = SequenceCalibration.P2 * SequenceCalibration.Tr;
break;
case 3:
ProjMat = SequenceCalibration.P3 * SequenceCalibration.Tr;
break;
default:
std::cerr << "Invalid Camera Id for Projection Matrix calculation. Enter a value between 0 and 3." << std::endl;
break;
}
std::cout << ProjMat << std::endl;
return ProjMat;
}
void ProjectPointcloudToImage (const cv::Mat& ProjMat, const cv::Mat& img, cv::Mat& PointCloud, cv::Mat& DepthImage,
const float min_dist = 5, const float max_dist = 200, const int depthfactor = 256){
// Projects a Lidar Pointcloud given as a vector of Points (x,y,z,r) into a image, given the Projection Matrix
// Clear Depth Image
DepthImage = cv::Mat::zeros(cv::Size(img.cols, img.rows), CV_16U);
// Perform Projection as Matrix multiplication of Projection Matrix e [3 x 4] and Points e [4 x n]
// to obtain a matrix of projected points e [3 x n]
cv::Mat ProjectedPointcloud;
ProjectedPointcloud = ProjMat * PointCloud;
// Normalization to pixel coordinates
ProjectedPointcloud.row(0) = ProjectedPointcloud.row(0).mul((1 / ProjectedPointcloud.row(2)));
ProjectedPointcloud.row(1) = ProjectedPointcloud.row(1).mul((1 / ProjectedPointcloud.row(2)));
// Fill depth image
double *u,*v,*d;
for (int32_t i = 0; i < ProjectedPointcloud.cols; i++){
// Retrieve Pixel Coordinate
u = &ProjectedPointcloud.at<double>(0, i);
v = &ProjectedPointcloud.at<double>(1, i);
d = &ProjectedPointcloud.at<double>(2, i);
// Check if the point lies in the image
if (*u > 0 && *v > 0 && *u < img.cols && *v < img.rows){
// Check if point lies in the specified boundaries for the distance
if (*d > min_dist && *d < max_dist){
// Set the pixel value at the given position
DepthImage.at<ushort>((int)*v, (int)*u) = (ushort)(*d * depthfactor);
}
}
}
// Save Image to a file
// cv::imwrite(SequencePath + "/image_" + std::to_string(camera_id) + "_Depth_Sparse/" + FrameName.str() + ".png", DepthImage);
}
// ===========================================================================================================================
// ===========================================================================================================================
// UPSAMPLING
// ===========================================================================================================================
// ===========================================================================================================================
void NearestNeighbor (cv::Mat& DepthImage, const int max_radius){
// // Upsamples a sparse image with neasrest neighbor within a nxn patch
// DenseDepthMap = Mat::zeros(DepthImage.rows, DepthImage.cols, CV_16U);
// Add padding of size "max_radius"
cv::Mat PaddedImage;
copyMakeBorder(DepthImage, PaddedImage, max_radius, max_radius, max_radius, max_radius, cv::BORDER_CONSTANT, 0);
// std::cout << "y: " << PaddedImage.rows << " | x: " << PaddedImage.cols << std::endl;
// Do distance transform to get the correct search radius for each pixel
cv::Mat Labels;
cv::Mat DistMap;
DepthImage.convertTo(DistMap, CV_8U);
cv::threshold(DistMap, DistMap, 0, 1, 1); // Inverted Thresh (0 if > 1); threshold(src, dst, threshold_value, max_binary_value, type)
cv::distanceTransform(DistMap, DistMap, Labels, distType, maskSize);
// DistMap.convertTo(DistMap, CV_16U);
// Iterate through all pixels
int searchradius = 0;
double min, max;
cv::Mat SearchBox;
for (int u = 0; u < DepthImage.cols; u++){ //cols
for (int v = 0; v < DepthImage.rows; v++){ //rows
// Get Search Radius for the current pixel
searchradius = (int)DistMap.at<float>(v, u);
if (searchradius >= 0 && searchradius < max_radius){
searchradius++;
SearchBox = PaddedImage(cv::Rect(u+max_radius-searchradius, v+max_radius-searchradius, 2*searchradius, 2*searchradius)); //2*(searchradius+1), 2*(searchradius+1)));
cv::minMaxLoc(SearchBox, &min, &max);
DepthImage.at<ushort>(v, u) = (ushort)max;
}
}
}
}
void FillPixels_nxn (cv::Mat& DepthMap, const int& PatchSize){
// Takes sparse depth image and fills empty pixels by calculating the avg of nxn neighboring patch
// Convolution with unity kernel (1 e [nxn]) and divide by number of non zero pixels in that patch
// Check Datatype of incoming image
if (DepthMap.type() != 2){
std::cerr << "Could not run FillPixels_nxn as input 'DepthMap' was not given as CV_16U." << std::endl;
return;
}
//Convolution Parameters
cv::Point anchor = cv::Point(-1, -1);
int delta = 0;
int ddepth = -1;
// Convolve scaled image with nxn kernel
cv::Mat FilteredImage;
DepthMap.convertTo(DepthMap, CV_32F);
cv::Mat kernel = cv::Mat::ones(PatchSize, PatchSize, CV_32F) / (PatchSize*PatchSize);
cv::filter2D(DepthMap, FilteredImage, ddepth , kernel, anchor, delta, cv::BORDER_DEFAULT);
// Count number of Pixels in each patch
cv::Mat PixelsPerPatch;
cv::Mat UnitKernel = cv::Mat::ones(PatchSize, PatchSize, CV_16U);
cv::threshold(DepthMap, PixelsPerPatch, 0, 1, 0); // Convert everything above 0 to 1
cv::filter2D(PixelsPerPatch, PixelsPerPatch, ddepth, UnitKernel, anchor, delta, cv::BORDER_DEFAULT); // holds number of non zero pixels in patch
// PixelsPerPatch.convertTo(PixelsPerPatch, CV_32F);
// Normalize the Filtered image by number of valid pixels per patch
DepthMap = FilteredImage.mul((PatchSize*PatchSize) / PixelsPerPatch);
// Reset to CV_16U
DepthMap.convertTo(DepthMap, CV_16U);
}
ushort GetNearestNeighborRespectingEdges(const cv::Mat &ROI, const cv::Mat &Edges, const int width){
// Find non Zero pixels in ROI
cv::Mat NonZero;
std::vector<cv::Point> locations;
ROI.convertTo(NonZero, CV_8U);
cv::findNonZero(NonZero, locations);
int BestDistance = std::numeric_limits<int>::max();
ushort BestDistanceValue = 0;
for(auto &value: locations) {
// std::cout << "=========" << std::endl;
int dx = value.x - width;
int dy = value.y - width;
int sgnx = (dx>=0) ? 1 : -1;
int sgny = (dy>=0) ? 1 : -1;
bool validpath = true;
uchar val;
// Get Route to each of the points
//First : go min(abs(dx), abs(dy)) steps diagonally in the respective directions
int nstepsdiag;
nstepsdiag = std::min(abs(dx), abs(dy));
for (int i = 1; i <= nstepsdiag; i++){
val = Edges.at<uchar>(width+i*sgny, width+i*sgnx);
if (val > 0){ // Path crosses a edge
validpath = false;
break;
}
}
//Second, go residual steps in x/y direction
int nstepshorvert;
nstepshorvert = std::max(abs(dx), abs(dy)) - nstepsdiag;
if ((abs(dx) > abs(dy)) & validpath){
// Go steps in x direction
for (int x = 1; x <= nstepshorvert; x++){
val = Edges.at<uchar>(width+(nstepsdiag)*sgny, width+(nstepsdiag+x)*sgnx);
if (val > 0){ // Path crosses a edge
validpath = false;
break;
}
}
}else if (validpath){
// Go steps in y direction
for (int y = 1; y <= nstepshorvert; y++){
val = Edges.at<uchar>(width+(nstepsdiag+y)*sgny, width+(nstepsdiag)*sgnx);
if (val > 0){ // Path crosses a edge
validpath = false;
break;
}
}
}
// Evaluate the path
int DistanceToTarget = (nstepsdiag + nstepshorvert);
if (validpath & (DistanceToTarget < BestDistance)){ // TODO: or distance is equal but value is smaller
//If we arrive here, no edge was found on the way to the pixel and the current depth value is the closest to the pixel of interes
BestDistanceValue = ROI.at<ushort>(value.y, value.x);
BestDistance = DistanceToTarget;
}
}
return BestDistanceValue;
}
void EdgePreservingNearestNeighbor(cv::Mat &DepthMap, cv::Mat &img, const int searchradius,
const int Canny_BlurKernelSize = 8, const int Canny_LowThreshold = 10, const int Canny_LowToHighRatio = 3, const int Canny_CannyKernelSize = 3){
// Ensure correct image formats
// TODO: Handle Color image input
if (DepthMap.type() != 2){
DepthMap.convertTo(DepthMap, CV_16U);
}
// Run Canny Edge Detection
cv::Mat CannyEdge;
img.convertTo(CannyEdge, CV_8U);
cv::blur(CannyEdge, CannyEdge, cv::Size(Canny_BlurKernelSize,Canny_BlurKernelSize));
cv::Canny(CannyEdge, CannyEdge, Canny_LowThreshold, Canny_LowThreshold*Canny_LowToHighRatio, Canny_CannyKernelSize);
// Add Padding to Depthmap and Canny Image
cv::Mat DepthMap_Padded, CannyEdge_Padded;
copyMakeBorder(DepthMap, DepthMap_Padded, searchradius, searchradius, searchradius, searchradius, cv::BORDER_CONSTANT, 0);
copyMakeBorder(CannyEdge, CannyEdge_Padded, searchradius, searchradius, searchradius, searchradius, cv::BORDER_CONSTANT, 0);
// Reserve Variables for Depth Upsamling
cv::Mat ROI_Depth, ROI_Canny, DepthDense;
ushort depthval;
for (int u = 0; u < DepthMap.cols; u++){
for (int v = 0; v < DepthMap.rows; v++){
// std::cout << v + width << " - " << u + width << std::endl;
depthval = DepthMap.at<ushort>(v, u);
if (depthval == 0){
//Define ROI
ROI_Depth = DepthMap_Padded(cv::Rect(u, v, 2*searchradius + 1, 2*searchradius + 1)); // Center of these Rect's are the point of interest in the original image
ROI_Canny = CannyEdge_Padded(cv::Rect(u, v, 2*searchradius + 1, 2*searchradius + 1));
//TODO: Check if ROI is empty or pixel is sampled
DepthMap.at<ushort>(v, u) = GetNearestNeighborRespectingEdges(ROI_Depth, ROI_Canny, searchradius);
}
}
}
}
void FillUpperRegion (cv::Mat& RawImage){
// Get List of non zero Pixels
std::vector<cv::Point> idx_n0;
//cv::Mat idx_n0;
cv::Mat Img_CV8UC1;
RawImage.convertTo(Img_CV8UC1, CV_8U); //Conversion required for findNonZero function
cv::findNonZero(Img_CV8UC1, idx_n0);
// For each column (x) in Image find upper row (min y) with a value
std::vector<int> UpperPixelYs(RawImage.cols, RawImage.rows-1);
std::vector<int> UpperPixelValues(RawImage.cols, 0);
//int PixelValue;
cv::Point pnt;
for (auto const& pixel: idx_n0){
if (UpperPixelYs.at(pixel.x) > pixel.y){
UpperPixelYs.at(pixel.x) = pixel.y;
UpperPixelValues.at(pixel.x) = (int)RawImage.at<ushort>(pixel.y, pixel.x);
//UpperPixelValues.at(pixel.x) = RawImage.row(pixel.y).col(pixel.x);
}
}
//Fill upper region of image
cv::Mat roi;
for (int x = 0; x < RawImage.cols; x++){
if (UpperPixelValues[x] > 0){
roi = RawImage.col(x).rowRange(0, UpperPixelYs[x]+1);
roi.setTo(cv::Scalar(UpperPixelValues[x]));
}
}
}
void interpolation_cols (cv::Mat& DepthMapToProcess){
// Variables
// Col of interest
cv::Mat Col;
// First and last valid LiDAR points in a column
ushort first_y, last_y;
// Iterator
int row_idx;
// Vector holding the y/v coordinates of valid LiDAR points in a column
std::vector<int> idx_n0_y;
// Vector holding the Points (u,v) on non zero values
std::vector<cv::Point> idx_n0;
// Interpolation variables
ushort y1, y2;
// Interpolation variables
int x1, x2;
//Convert Image to CV8UC1, required for findNonZero
cv::Mat DepthMap_CV8U;
DepthMapToProcess.convertTo(DepthMap_CV8U, CV_8U);
for (int x = 0; x<DepthMapToProcess.cols; x++){
// Extract the current coloumn of interes
Col = DepthMap_CV8U.col(x);
// Get Non Zero Values
idx_n0.clear(); //Holds indices of all non zero elements of Row
cv::findNonZero(Col, idx_n0);
// Extract the y coordinates of non zero pixels
idx_n0_y.clear();
for (auto const& value: idx_n0){
idx_n0_y.push_back(value.y);
}
row_idx = 0;
if (!idx_n0_y.empty()){
// Extract first and last valid value in the column
first_y = DepthMapToProcess.at<ushort>(idx_n0_y.front(), x);
last_y = DepthMapToProcess.at<ushort>(idx_n0_y.back(), x);
// Iterate through all indices in the row to set the value
for (int idx = 0; idx < Col.rows; idx++){
if (idx < idx_n0_y.front()){
// If below lowest row with LiDAR point, take the value of the lowest row
DepthMapToProcess.at<ushort>(idx, x) = first_y;
}else if (idx > idx_n0_y.back()){
// If above highest row with LiDAR point, take the value of the highest row
DepthMapToProcess.at<ushort>(idx, x) = last_y;
}else if (idx == idx_n0_y[row_idx]){
// If it's a valid pixel, increase counter pointing to the currently valid values
row_idx++;
}else{
// Between to valid points --> Do linear interpolation
// Linear Interpolation
// y = y1 + (x - x1) ((y2 - y1) / (x2 - x1))
y1 = DepthMapToProcess.at<ushort>(idx_n0_y[row_idx - 1], x);
y2 = DepthMapToProcess.at<ushort>(idx_n0_y[row_idx], x);
x1 = idx_n0_y[row_idx - 1];
x2 = idx_n0_y[row_idx];
DepthMapToProcess.at<ushort>(idx, x) = (y1 + (idx - x1) * ((y2 - y1) / (x2 - x1)));
}
}
}
}
}
void interpolation_rows (cv::Mat& DepthMapToProcess){
// Variables
// Row of interest
cv::Mat Row;
// First and last valid LiDAR points in a column
ushort first_x, last_x;
// Iterator
int col_idx;
// Vector holding the x/u coordinates of valid LiDAR points in a row
std::vector<int> idx_n0_x;
// Vector holding the Points (u,v) on non zero values
std::vector<cv::Point> idx_n0;
// Interpolation variables
ushort y1, y2;
// Interpolation variables
int x1, x2;
//Convert Image to CV8UC1, required for findNonZero
cv::Mat DepthMap_CV8U;
DepthMapToProcess.convertTo(DepthMap_CV8U, CV_8U);
for (int y = 0; y<DepthMapToProcess.rows; y++){
// Extract the current coloumn of interes
Row = DepthMap_CV8U.row(y);
// Get Non Zero Values
idx_n0.clear(); //Holds indices of all non zero elements of Row
cv::findNonZero(Row, idx_n0);
// Extract the y coordinates of non zero pixels
idx_n0_x.clear();
for (auto const& value: idx_n0){
idx_n0_x.push_back(value.x);
}
col_idx = 0;
if (!idx_n0_x.empty()){ // at least one valid pixel in the row
// Extract first and last valid value in the row
first_x = DepthMapToProcess.at<ushort>(y, idx_n0_x.front());
last_x = DepthMapToProcess.at<ushort>(y, idx_n0_x.back());
// Iterate through all indices in the Column to set the value
for (int idx = 0; idx < Row.cols; idx++){
if (idx < idx_n0_x.front()){
// If below lowest row with LiDAR point, take the value of the lowest row
DepthMapToProcess.at<ushort>(y, idx) = first_x;
}else if (idx > idx_n0_x.back()){
// If above highest row with LiDAR point, take the value of the highest row
DepthMapToProcess.at<ushort>(y, idx) = last_x;
}else if (idx == idx_n0_x[col_idx]){
// If it's a valid pixel, increase counter pointing to the currently valid values
col_idx++;
}else{
// Between to valid points --> Do linear interpolation