Skip to content

TOTON95/Hand_Gesture_UAV

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 

Repository files navigation

UAV Hand gestures

This ROS node is capable of control a UAV (Parrot Bebop) with Tiny YOLO v3 and a Kinect Sensor (V1). This approach consists in the detection of a particular gesture based on ASL to command the UAV and navigate through the different waypoints created by the user.

Prerequisites

This node was tested using Ubuntu 18.04 and ROS Melodic

  • PID Controller ROS
  • Vicon Bridge
  • Bebop_ROS_Examples
  • OpenNI launch
  • OpenNI Tracker
  • NITE 1.5.2
  • Bebop Autonomy
  • Darknet ROS
  • CUDA

Installation

  1. Create a new workspace and move in it

$ mkdir catkin_ws && cd catkin_ws

  1. Create a source file and move into it

$ mkdir src && cd src

  1. Install the following resources from binaries
  • PID Controller:

$ sudo apt-get install ros-melodic-pid

  • CUDA:

$ ubuntu-drivers devices

If you agree with the recommendation:

$ sudo ubuntu-drivers autoinstall

Finally, reboot.

  1. Install the rest of the packages from source into the created workspace
  • Vicon:

$ git clone https://github.com/ethz-asl/vicon_bridge

$ cd ../

$ catkin_make

Important: The address of the vicon system should be modified (at the launch file) to connect the node with the motion camera system.

  • OpenNI Launch:

$ cd src

$ git clone https://github.com/ros-drivers/openni_camera.git

$ cd ../

$ catkin_make

  • OpenNI Tracker

$ cd src

$ git clone https://github.com/ros-drivers/openni_tracker.git

$ cd ../

$ catkin build openni_tracker

  • NITE 1.5.2

$ cd src

$ git clone https://github.com/arnaud-ramey/NITE-Bin-Dev-Linux-v1.5.2.23.git

$ cd NITE-Bin-Dev-Linux-v1.5.2.23/x64

$ sudo ./install.sh

$ cd ../../

  • Bebop Autonomy:

$ cd src

$ sudo apt-get install build-essential python-rosdep python-catkin-tools

$ git clone https://github.com/AutonomyLab/bebop_autonomy.git src/bebop_autonomy

$ rosdep update

$ rosdep install --from-paths src -i

$ cd ../

$ catkin build

  • Bebop_ROS_Examples:

$ cd src

$ git clone https://github.com/TOTON95/Bebop_ROS_Examples.git

$ catkin_make

$ cd ../

  • Darknet ROS:

$ cd src

$ git clone --recursive [email protected]:leggedrobotics/darknet_ros.git

$ cd ../

$ catkin_make -DCMAKE_BUILD_TYPE=Release

If the compiler throws errors like:

nvcc fatal : Unsupported gpu architecture 'compute_61'.

That means that the configuration of the graphical card is not at the CMakeLists.txt file, look for the compute capibility of your hardware in sites like Wikipedia and add the missing line, like this:

-O3 -gencode arch=compute_62,code=sm_62

(Please refer to https://github.com/leggedrobotics/darknet_ros, for more information)

Follow the instructions at the website above to locate the weights of the hand gestures

Finally clone this repository and build it

git clone https://github.com/TOTON95/Hand_Gesture_UAV.git

cd ../..

catkin_make

Running

  • Start a new terminal and type roscore
  • Start a new terminal for each package and type rosrun <name_package> <name_node>, being the hand gestures the last one to activate
  • Some of the packages offer the possibility to be initialized using roslaunch (see the respective repository for more info)

Releases

No releases published

Packages

No packages published