forked from rm-vision-archive/rm_classifier_training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp_training.py
103 lines (82 loc) · 2.65 KB
/
mlp_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright (c) 2023 ChenJun
import onnx
import os
import torch
import torchvision
from torch import nn
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Flatten(),
nn.Linear(20 * 28 * 1, 120),
nn.ReLU(),
nn.Linear(120, 84),
nn.ReLU(),
nn.Linear(84, 9)
)
def forward(self, x):
return self.layers(x)
def save_model(model):
# Save as onnx
dummy_input = torch.randn(1, 20, 28, 1)
torch.onnx.export(model, dummy_input, "mlp.onnx")
# Check onnx
onnx_model = onnx.load("mlp.onnx")
onnx.checker.check_model(onnx_model)
print(onnx.helper.printable_graph(onnx_model.graph))
# Init model
model = MLP()
print(model, "\n")
# Load data from folder
dataset = torchvision.datasets.ImageFolder(
root=os.path.join(os.path.dirname(__file__), 'datasets'),
transform=torchvision.transforms.Compose([
torchvision.transforms.Grayscale(),
torchvision.transforms.RandomAffine(
degrees=(-5, 5), translate=(0.08, 0.08), scale=(0.9, 1.1)),
torchvision.transforms.ToTensor(),
torchvision.transforms.RandomErasing(
scale=(0.02, 0.02))
]))
print(dataset, "\n")
# Show label names
print("classes:\n", dataset.classes, "\n")
# Split dataset into train and test (5:1)
train_dataset, test_dataset = torch.utils.data.random_split(
dataset, [int(len(dataset) * 0.8), len(dataset) - int(len(dataset) * 0.8)])
# Define loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# Define data loader
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=100, shuffle=True)
# Train and evaluate
for epoch in range(5):
for batch, (x, y) in enumerate(train_loader):
# Forward
y_pred = model(x)
# Compute loss
loss = loss_fn(y_pred, y)
# Backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print loss
if batch % 100 == 0:
print(f'Epoch: {epoch}, Batch: {batch}, Loss: {loss.item()}')
# Evaluate
with torch.no_grad():
correct = 0
total = 0
for x, y in test_loader:
y_pred = model(x)
_, predicted = torch.max(y_pred.data, 1)
total += y.size(0)
correct += (predicted == y).sum().item()
print(f'Epoch: {epoch}, Accuracy: {100 * correct / total}%')
# Save model on each epoch
save_model(model)
print("\n")