Author Davide Gerosa
email [email protected]
Copyright Copyright (C) 2016 Davide Gerosa
Licence CC BY 4.0
Version 1.0.2
precession
is an open-source Python module to study the dynamics of precessing
black-hole binaries in the post-Newtonian regime. The code provides a
comprehensive toolbox to (i) study the evolution of the black-hole spins along
their precession cycles, (ii) perform gravitational-wave driven binary inspirals
using both orbit-averaged and precession-averaged integrations, and (iii)
predict the properties of the merger remnant through fitting formulae obtained
from numerical relativity simulations. precession
is a ready-to-use tool to
add the black-hole spin dynamics to larger-scale numerical studies such as
gravitational-wave parameter estimation codes, population synthesis models to
predict gravitational-wave event rates, galaxy merger trees and cosmological
simulations of structure formation. precession
provides fast and reliable
integration methods to propagate statistical samples of black-hole binaries
from/to large separations where they form to/from small separations where they
become detectable, thus linking gravitational-wave observations of spinning
black-hole binaries to their astrophysical formation history. The code is also a
useful tool to compute initial parameters for numerical relativity simulations
targeting specific precessing systems.
This code is released to the community under the Creative Commons Attribution
International license.
Essentially, you may use precession
as you like but must make reference to
our work. When using precession
in any published work, please cite the paper
describing its implementation:
- PRECESSION: Dynamics of spinning black-hole binaries with python. D. Gerosa, M. Kesden. PRD 93 (2016) 124066. arXiv:1605.01067
precession
is an open-source code distributed under git version-control system on
API documentation can be generated automatically in html format from the code
docstrings using pdoc
, and is uplodad to a dedicated branch of the git
repository
Further information and scientific results are available at:
precession
works in python 2.x and has been tested on 2.7.10. It can be
installed through pip:
pip install precession
Prerequisites are numpy
, scipy
and parmap
, which can be all installed
through pip. Information on all code functions are available through Pyhton's
built-in help system
import precession
help(precession.function)
Several tests and tutorial are available in the submodule precession.test
. A
detailed description of the functionalies of the code is provided in the
scientific paper arXiv:1605.01067, where
examples are also presented.
precession
has been used in the following published papers:
- Gerosa and Sesana. MNRAS 446 (2015) 38-55. arXiv:1405.2072
- Kesden et al. PRL 114 (2015) 081103. arXiv:1411.0674
- Gerosa et al. MNRAS 451 (2015) 3941-3954. arXiv:1503.06807
- Gerosa et al. PRD 92 (2015) 064016. arXiv:1506.03492
- Gerosa et al. PRL 115 (2015) 141102. arXiv:1506.09116
- Trifiro' et al. PRD 93 (2016) 044071. arXiv:1507.05587
- Gerosa and Kesden. PRD 93 (2016) 124066. arXiv:1605.01067
- Gerosa and Moore. PRL 117 (2016) 011101. arXiv:1606.04226
- Rodriguez et al. APJL 832 (2016) L2 arXiv:1609.05916
- Gerosa et al. CQG 34 (2017) 6, 064004 arXiv:1612.05263
- Gerosa and Berti. PRD 95 (2017) 124046. arXiv:1703.06223
- Zhao et al. PRD 96 (2017) 024007. arXiv:1705.02369
- Wysocki et al. arXiv:1709.01943
v1.0.0. Stable version released together with the first arxiv submission of arXiv:1605.01067.
v1.0.2. Clarifications on typos in Eq. (36) and (37) of arXiv:1605.01067. See help(precession) for more information.
The code is developed and maintained by Davide Gerosa. Please, report bugs to
I am happy to help you out!
Thanks: M. Kesden, U. Sperhake, E. Berti, R. O'Shaughnessy, A. Sesana, D. Trifiro', A. Klein, J. Vosmera and X. Zhao.