Skip to content

Commit

Permalink
Merge branch 'develop'
Browse files Browse the repository at this point in the history
  • Loading branch information
mccoys committed Oct 29, 2024
2 parents 60be162 + 538f721 commit a314517
Show file tree
Hide file tree
Showing 34 changed files with 947 additions and 302 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -33,3 +33,4 @@ exec_script.sh.*
.DS_Store
tables/*
*.stats*
.venv*
2 changes: 1 addition & 1 deletion benchmarks/collisions/ionization_multiple.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@

timestep2 = int(np.double(S2.namelist.Main.timestep))
D += [
S2.ParticleBinning(0,sum={"ekin":[0,1]}, linestyle="", marker=".", color=color )
S2.ParticleBinning(0,sum={"ekin":[0,1]}, linestyle="", marker=".", color=color, label=elm )
]


Expand Down
87 changes: 87 additions & 0 deletions benchmarks/tst_collisions3_AM_uniformity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# ---------------------------------------------
# SIMULATION PARAMETERS FOR THE PIC-CODE SMILEI
# ---------------------------------------------

import math
L0 = 2.*math.pi # conversion from normalization length to wavelength


Main(
geometry = "AMcylindrical",

number_of_patches = [ 4, 4 ],

interpolation_order = 2,
number_of_AM = 1,

timestep = 1 * L0,
simulation_time = 10 * L0,

time_fields_frozen = 100000000000.,

cell_length = [L0, L0],
grid_length = [64.*L0, 64*L0],

EM_boundary_conditions = [ ["periodic", "periodic"], ["silver-muller", "buneman"] ],

solve_poisson = False,

reference_angular_frequency_SI = L0 * 3e8 /1.e-6,
)


ion = "ion"
eon = "eon"

Species(
name = eon,
position_initialization = "random",
momentum_initialization = "cold",
particles_per_cell= 100,
mass = 1.0,
charge = -1.0,
charge_density = 1.,
mean_velocity = [0.8, 0., 0.],
temperature = [0.]*3,
time_frozen = 100000000.0,
boundary_conditions = [
["periodic", "periodic"],
["remove", "remove"],
],
)

Species(
name = ion,
position_initialization = "random",
momentum_initialization = "cold",
particles_per_cell= 100,
mass = 1836.0*13.,
charge = 3.0,
charge_density = 1.,
mean_velocity = [0., 0., 0.],
temperature = [0.]*3,
time_frozen = 100000000.0,
boundary_conditions = [
["periodic", "periodic"],
["remove", "reflective"],
],
atomic_number = 13
)

Collisions(
species1 = [eon],
species2 = [ion],
coulomb_log = 3,
)

def radius(particles): return np.sqrt(particles.y**2 + particles.z**2)

DiagParticleBinning(
deposited_quantity = "weight_vy_py",
every = 4,
species = [ion],
axes = [
["x", 0, Main.grid_length[0], 64],
[radius, 0, Main.grid_length[1], 64]
]
)
147 changes: 131 additions & 16 deletions doc/Sphinx/Overview/material.rst
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ Papers involving Smilei
^^^^^^^^^^^^^^^^^^^^^^^^

Only papers published in peer-reviewed journals are listed (for the complete list of citing papers see `Google Scholar <https://scholar.google.com/scholar?hl=fr&as_sdt=2005&sciodt=0,5&cites=17416460455672944837&scipsc=&q=&scisbd=1>`_).
As of May 2024, at least 192 papers have been published covering a broad range of topics:
As of October 2024, at least 211 papers have been published covering a broad range of topics:

* laser-plasma interaction (LPI) / inertial fusion (FCI)
* ultra-high intensity (UHI) applications
Expand All @@ -51,6 +51,127 @@ Following is the distribution of these topics in the listed publications up to N
You can count the number of papers in the list with the vim command :%s/.. \[//gn.
.. [Jirka2024]
M. Jirka and S. V. Bulanov,
`Effects of Colliding Laser Pulses Polarization on e- e+ Cascade Development in Extreme Focusing`,
`Physical Review Letters 133, 125001 (2024) <http://dx.doi.org/10.1103/PhysRevLett.133.125001>`_
.. [Plotnikov2024]
I. Plotnikov, A. J. van Marle, C. Guépin, A. Marcowith and Pierrick Martin,
`Kinetic simulations of electron–positron induced streaming instability in the context of gamma-ray halos around pulsars`,
`Astronomy & Astrophysics 688, A134 (2024) <http://dx.doi.org/10.1051/0004-6361/202449661>`_
.. [Mukherjee2024]
A. Mukherjee and Daniel Seipt,
`Laser polarization control of ionization-injected electron beams and x-ray radiation in laser wakefield accelerators`,
`Plasma Physics and Controlled Fusion 66, 085001 (2024) <http://dx.doi.org/10.1088/1361-6587/ad5379>`_
.. [Yao2024]
W. Yao, R. Lelièvre, T. Waltenspiel, I. Cohen, A. Allaoua, P. Antici, A. Beck, E. Cohen, X. Davoine, E. d’Humières, Q. Ducasse, E. Filippov, C. Gautier, L. Gremillet, P. Koseoglou, D. Michaeli, D. Papadopoulos, S. Pikuz, I. Pomerantz, F. Trompier, Y. Yuan, F. Mathieu and Julien Fuchs,
`Enhanced Energy, Conversion Efficiency and Collimation of Protons Driven by High-Contrast and Ultrashort Laser Pulses`,
`Applied Sciences 14, 6101 (2024) <http://dx.doi.org/10.3390/app14146101>`_
.. [Dmitriev2024]
E. Dmitriev and Ph. Korneev,
`Angular momentum gain by electrons under the action of intense structured light`,
`Physical Review A 110, 013514 (2024) <http://dx.doi.org/10.1103/PhysRevA.110.013514>`_
.. [Yu2024]
H. Yu, Q. Xia and Jun Fang,
`Nonthermal Acceleration of Electrons, Positrons, and Protons at a Nonrelativistic Quasi-parallel Collisionless Shock`,
`The Astrophysical Journal 969, 13 (2024) <http://dx.doi.org/10.3847/1538-4357/ad5181>`_
.. [Liu2024]
B. Liu, B. Lei, Y. Gao, M. Wen, and K. Zhu,
`Plasma opacity induced by laser-driven movement of background ions`,
`Plasma Physics and Controlled Fusion 66, 115004 (2024) <https://doi.org/10.1088/1361-6587/ad797f>`_
.. [Martin2024]
H. Martin, R. W. Paddock, M. W. von der Leyen, V. Eliseev, R. T. Ruskov, R. Timmis, J. J. Lee, A. James, and P. A. Norreys,
`Electrothermal filamentation of igniting plasmas`,
`Physical Review E 110, 035205 (2024) <https://doi.org/10.1103/PhysRevE.110.035205>`_
.. [Horny2024]
V. Horný, P. G. Bleotu, D. Ursescu, V. Malka, and P. Tomassini,
`Efficient laser wakefield accelerator in pump depletion dominated bubble regime`,
`Physical Review E 110, 035202 (2024) <https://doi.org/10.1103/PhysRevE.110.035202>`_
.. [DeAndres2024]
A. De Andres, S. Bhadoria, J. T. Marmolejo, A. Muschet, P. Fischer, H. R. Barzegar, T. Blackburn, A. Gonoskov, D. Hanstorp, M. Marklund and L. Veisz,
`Unforeseen advantage of looser focusing in vacuum laser acceleration`,
`Nature Communications Physics 7, 293 (2024) <https://doi.org/10.1038/s42005-024-01781-9>`_
.. [Yoon2024]
Y. D. Yoon, M. Laishram, T. E. Moore, and G. S. Yun,
`Non-equilibrium formation and relaxation of magnetic flux ropes at kinetic scales`,
`Nature Communications Physics 7, 297 (2024) <https://doi.org/10.1038/s42005-024-01784-6>`_
.. [Laishram2024]
M. Laishram, G. S. Yun, and Y. D. Yoon,
`Magnetogenesis via the canonical battery effect`,
`Physical Review Research 6, L032052 (2024) <https://doi.org/10.1103/PhysRevResearch.6.L032052>`_
.. [Kang2024]
H. L. Kang, Y. D. Yoon, M.-H. Cho and G. S. Yun,
`Fast nonlinear scattering of runaway electron beams through resonant interactions with plasma waves`,
`Nuclear Fusion 64, 10 (2024) <https://doi.org/10.1088/1741-4326/ad6ce6>`_
.. [Gonzalez-Izquierdo2024]
B. Gonzalez-Izquierdo, P. Fischer, M. Touati, J. Hartmann, M. Speicher, V. Scutelnic, G. Bodini, A. Fazzini, M. M. Guenther, A. K. Haerle, K. Kenney, E. Schork, S. Bruce, M. Spinks, H. J. Quevedo, A. Helal, M. Medina, E. Gaul, H. Ruhl, M. Schollmeier, S. Steinke, and G. Korn,
`Efficient laser-driven proton acceleration from a petawatt contrast-enhanced second harmonic mixed-glass laser system`,
`Physics of Plasmas 31, 083105 (2024) <https://doi.org/10.1063/5.0191366>`_
.. [Ma2024]
Z. Ma, Y. Wang, Y. Yang, Y. Wang, K. Zhao, Y. Li, C. Fu, W. He, Y. Ma,
`Simulation of nuclear isomer production in laser-induced plasma`,
`Matter and Radiation at Extremes 9, 055201 (2024) <https://doi.org/10.1063/5.0212163>`_
.. [Kleij2024]
P. S. Kleij, S. Marini, M. Caetano de Sousa, M. Grech, C. Riconda, M. Raynaud,
`Photon emission and radiation reaction effects in surface plasma waves in ultra-high intensities`,
`Physics of Plasmas 31, 072111 (2024) <https://doi.org/10.1063/5.0209316>`_
.. [Ghizzo2024]
A. Ghizzo, D. Del Sarto, H. Betar,
`Collisionless heating in Vlasov plasma and turbulence-driven filamentation aspects`,
`Physics of Plasmas 31, 072109 (2024) <https://doi.org/10.1063/5.0205253>`_
.. [Gelfer2024]
E. G. Gelfer, A. M. Fedotov, O. Klimo, and S. Weber,
`Coherent radiation of an electron bunch colliding with an intense laser pulse`,
`Physical Review Research 6, L032013 (2024) <https://doi.org/10.1103/PhysRevResearch.6.L032013>`_
.. [Zagidullin2024]
R. Zagidullin, V. Zorina, J. W. Wang, S. G. Rykovanov,
`Polarization control of attosecond pulses from laser-nanofoil interactions using an external magnetic field`,
`Physics of Plasmas 31, 073303 (2024) <https://doi.org/10.1063/5.0213592>`_
.. [Marini2024]
S. Marini, D. F. G. Minenna, F. Massimo, L. Batista, V. Bencini, A. Chancé, N. Chauvin, S. Doebert, J. Farmer, E. Gschwendtner, I. Moulanier, P. Muggli, D. Uriot, B. Cros, and P. A. P. Nghiem,
`Beam physics studies for a high charge and high beam quality laser-plasma accelerator`,
`Physical Review Accelerators and Beams 27, 063401 (2024) <https://doi.org/10.1103/PhysRevAccelBeams.27.063401>`_
.. [Sikorski2024]
P. Sikorski, A. G. R. Thomas, S. S. Bulanov, M. Zepf and D. Seipt,
Expand Down Expand Up @@ -385,7 +506,7 @@ Following is the distribution of these topics in the listed publications up to N
V. Istokskaia, M. Tosca, L. Giuffrida, J. Psikal, F. Grepl, V. Kantarelou, S. Stancek, S. Di Siena, A. Hadjikyriacou, A. McIlvenny, Y. Levy, J. Huynh, M. Cimrman, P. Pleskunov, D. Nikitin, A. Choukourov, F. Belloni, A. Picciotto, S. Kar, M. Borghesi, A. Lucianetti, T. Mocek and D. Margarone,
`A multi-MeV alpha particle source via proton-boron fusion driven by a 10-GW tabletop laser`,
`Communications Physics 6, 27 (2023) <http://dx.doi.org/10.1038/s42005-023-01135-x>`_
`Nature Communications Physics 6, 27 (2023) <http://dx.doi.org/10.1038/s42005-023-01135-x>`_
.. [Yoon2023]
Expand Down Expand Up @@ -428,6 +549,12 @@ Following is the distribution of these topics in the listed publications up to N
S. Marini, M. Grech, P. S. Kleij, M. Raynaud and C. Riconda,
`Electron acceleration by laser plasma wedge interaction`,
`Physical Review Research 5, 013115 (2023) <http://dx.doi.org/10.1103/PhysRevResearch.5.013115>`_
.. [Miloshevsky2023]
G. Miloshevsky,
`Particle-in-Cell Modeling of Omega Experiments on Ablation of Plasmas`,
`IEEE Transactions on Plasma Science 51, 4 (2023) <https://doi.org/10.1109/TPS.2022.3220184>`_
.. [Blackman2022]
Expand Down Expand Up @@ -507,7 +634,7 @@ Following is the distribution of these topics in the listed publications up to N
`Injection of electron beams into two laser wakefields and generation of electron rings`,
`Physical Review E 106, 055202 (2022) <https://doi.org/10.1103/PhysRevE.106.055202>`_
.. [Kumar2022b]
.. [Ku2022]
S. Ku., R. Dhawan, D.K. Singh and H. K. Malik,
`Diagnostic of laser wakefield acceleration with ultra – Short laser pulse by using SMILEI PIC code`,
Expand All @@ -519,12 +646,6 @@ Following is the distribution of these topics in the listed publications up to N
`Comparative study of ultrashort single-pulse and multi-pulse driven laser wakefield acceleration`,
`Laser Physics Letters 20, 026001 (2022) <http://dx.doi.org/10.1088/1612-202X/aca978>`_
.. [Miloshevsky2022]
G. Miloshevsky,
`Pic Modeling of Omega Experiments on Ablation of Plasmas`,
`2022 IEEE International Conference on Plasma Science (ICOPS), ICOPS45751.2022.9813047 (2022) <http://dx.doi.org/10.1109/ICOPS45751.2022.9813047>`_
.. [Zhang2022b]
Y. Zhang, F. Wang, J. Liu and J. Sun,
Expand Down Expand Up @@ -628,12 +749,6 @@ Following is the distribution of these topics in the listed publications up to N
`Subcycle terahertz field waveforms clocked by attosecond high-harmonic pulses from relativistic laser plasmas`,
`Journal of Applied Physics 131, 103104 (2022) <http://dx.doi.org/10.1063/5.0070670>`_
.. [Umstadter2022]
D. Umstadter
`Controlled Injection of Electrons for Improved Performance of Laser-Wakefield Acceleration`,
`United States Department of Energy Technical Report (2022) <http://dx.doi.org/10.2172/1838680>`_
.. [Massimo2022]
F. Massimo, M. Lobet, J. Derouillat, A. Beck, G. Bouchard, M. Grech, F. Pérez, T. Vinci,
Expand Down Expand Up @@ -880,7 +995,7 @@ Following is the distribution of these topics in the listed publications up to N
W. Yao, A. Fazzini, S. N. Chen, K. Burdonov, P. Antici, J. Béard, S. Bolaños, A. Ciardi, R. Diab, E. D. Filippov, S. Kisyov, V. Lelasseux, M. Miceli, Q. Moreno, V. Nastasa, S. Orlando, S. Pikuz, D. C. Popescu, G. Revet, X. Ribeyre, E. d’Humières and J. Fuchs,
`Laboratory evidence for proton energization by collisionless shock surfing`,
`Nat. Phys. 17, 1177-1182 (2021) <http://dx.doi.org/10.1038/s41567-021-01325-w>`_
`Nature Physics 17, 1177-1182 (2021) <http://dx.doi.org/10.1038/s41567-021-01325-w>`_
.. [Gelfer2021]
Expand Down
2 changes: 2 additions & 0 deletions doc/Sphinx/Overview/releases.rst
Original file line number Diff line number Diff line change
Expand Up @@ -28,12 +28,14 @@ Changes made in the repository (not released)
* Prescribed fields in AM geometry.
* Particle reflective boundary conditions at Rmax in AM geometry.
* 1st order Ruyten shape function in AM geometry.
* Support for collisions in single mode AM geometry.

* **Bug fixes**:

* Tunnel ionization was wrong in some cases for high atomic numbers.
* Custom functions in ``ParticleBinning`` crashed with python 3.12.
* Species-specific diagnostics in AM geometry with vectorization.
* Frozen particles in AM geometry with adaptive vectorization.
* Happi's ``average`` argument would sometimes be missing the last bin.
* 1D projector on GPU without diagnostics

Expand Down
25 changes: 21 additions & 4 deletions doc/Sphinx/Understand/collisions.rst
Original file line number Diff line number Diff line change
Expand Up @@ -309,21 +309,38 @@ the ion:
\sum\limits_{p=0}^{k-1} R^{i+k}_{i+p} \left(\bar{P}^{i+k} - \bar{P}^{i+p}\right)
\prod\limits_{j=0,j\ne p}^{k-1} R^{i+p}_{i+j}
&
\quad\mathrm{if}\quad 0<k<k_\mathrm{max}
\quad\mathrm{if}\quad 0<k<Z-Z^\star
\end{array}
\right.
..
\\
\sum\limits_{p=0}^{k-1} \left[ 1+R^{i+k}_{i+p}\left(\frac{W_{i+k}}{W_{i+p}}\bar{P}^{i+p} - \bar{P}^{i+k}\right) \right]
\prod\limits_{j=0,j\ne p}^{k-1} R^{i+p}_{i+j}
&
\quad\mathrm{if}\quad k=k_\mathrm{max}
\end{array}
\right.
where :math:`k_\mathrm{max} = Z-Z^\star`.

To simplify the calculation of :math:`P^i_k` (in particular the second case in the
equation above) we use the following equivalent expression:

.. math::
P^i_k = A_{k-1} \sum\limits_{p=0}^{k-1} \left(\bar{P}^{i+k} - \bar{P}^{i+p}\right)
/ B_k^p
\quad\mathrm{if}\quad 0<k<Z-Z^\star
where :math:`A_k = \prod\limits_{j=0}^{k} W_{i+j}` and
:math:`B_k^p = \prod\limits_{j=0,j\ne p}^{k} (W_{i+j}-W_{i+p})`.
These two quantities can be computed recursively for each :math:`k`.


The cumulative probability :math:`F^i_k = \sum_{j=0}^{k} P^i_j` provides an efficient
way to pick when the ionization stops: we pick a random number :math:`U\in [0,1]` and
loop from :math:`k=0` to :math:`k_\mathrm{max}`. We stop ionizing when :math:`F^i_k>U`.



----

Test cases for ionization
Expand Down
10 changes: 5 additions & 5 deletions doc/Sphinx/Use/namelist.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1390,8 +1390,8 @@ Lasers
^^^^^^

A laser consists in applying oscillating boundary conditions for the magnetic
field on one of the box sides. The only boundary condition that supports lasers
is ``"silver-muller"`` (see :py:data:`EM_boundary_conditions`).
field on one of the box sides. The only boundary conditions that support lasers
are ``"silver-muller"`` and ``"PML"`` (see :py:data:`EM_boundary_conditions`).
There are several syntaxes to introduce a laser in :program:`Smilei`:

.. note::
Expand Down Expand Up @@ -1440,10 +1440,10 @@ There are several syntaxes to introduce a laser in :program:`Smilei`:

.. py:data:: space_time_profile_AM
:type: A list of maximum 2 x ``number_of_AM`` *python* functions.
:type: A list of maximum 2 x ``number_of_AM`` complex valued *python* functions.

These profiles define the first modes of :math:`B_r` and :math:`B_\theta` in the
order shown in the above example. Undefined modes are considered zero.
These profiles define the first modes of :math:`B_r` and :math:`B_\theta` of the laser in the
order shown in the above example. Higher undefined modes are considered zero.
This can be used only in ``AMcylindrical`` geometry. In this
geometry a two-dimensional :math:`(x,r)` grid is used and the laser is injected from a
:math:`x` boundary, thus the provided profiles must be a function of :math:`(r,t)`.
Expand Down
Loading

0 comments on commit a314517

Please sign in to comment.