In-Memory computation and Parallel-Processing are some of the major reasons that Apache Spark has become very popular in the big data industry to deal with data products at large scale and perform faster analysis. built on top of Spark, MLlib is a scalable Machine Learning library that delivers both high-quality algorithms and blazing speed. having great APIs for Java, Python, and Scala, it makes a top choice for Data Analysts, Data Engineers, and Data Scientists. MLlib consists of common learning algorithms and utilities, including classification, regression, clustering, collaborative filtering (matrix factorization), dimensionality reduction and etc.
end-to-end Machine Learning model with MLlib in pySpark, For a Binary Classification problem with Imbalanced Classes Check out the full Articele and tutorial on how to run this project here.