Automated Exploratory Data Analysis (EDA) toolkit that delivers statistical insights and publication-ready visualizations with 3 lines of code.
from auto_eda import DataAnalyzer
analyzer = DataAnalyzer(df)
analyzer.explore_all() # Generates complete report
- Smart Analysis
Univariate, bivariate, and multivariate diagnostics - Visualization Backends
Switch between Seaborn or Plotly with one parameter - Statistical Rigor
Built-in hypothesis testing and model diagnostics - Zero Configuration
Works out-of-the-box while allowing customization
pip install quickeda
# Initialize with your dataframe
analyzer = DataAnalyzer(df)
# 1. Univariate stats (all features)
stats = analyzer.univariate_analysis(sort_by="skew")
# 2. Bivariate analysis (against target)
plots = analyzer.bivariate_analysis('price', plot_backend='plotly')
# 3. Check multicollinearity
vif_results = analyzer.multivariate_analysis('price', method='vif')
analyzer.plotter.set_backend('seaborn') # Default
analyzer.plotter.set_backend('plotly') # Interactive
Plot Type | Description |
---|---|
.scatter() |
Regression plots with stats |
.bar_chart() |
Group comparisons with ANOVA |
.histogram() |
Distribution analysis |
stepwise = analyzer.multivariate_analysis(
target='price',
method='stepwise',
min_features=3
)
from auto_eda.stats import calculate_vif
vif = calculate_vif(df, target='price')
PRs are welcome! See CONTRIBUTING.md for guidelines.
MIT © 2023 Shubham Patel