Skip to content

Commit

Permalink
Merge pull request #359 from SheffieldML/devel
Browse files Browse the repository at this point in the history
Minor patch
  • Loading branch information
mzwiessele committed Apr 5, 2016
2 parents 517f580 + b4aeb82 commit 8d08da3
Show file tree
Hide file tree
Showing 15 changed files with 201 additions and 182 deletions.
2 changes: 1 addition & 1 deletion GPy/__version__.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
__version__ = "1.0.1"
__version__ = "1.0.2"
11 changes: 9 additions & 2 deletions GPy/core/gp.py
Original file line number Diff line number Diff line change
Expand Up @@ -437,15 +437,22 @@ def predict_wishard_embedding(self, Xnew, kern=None, mean=True, covariance=True)
warnings.warn("Wrong naming, use predict_wishart_embedding instead. Will be removed in future versions!", DeprecationWarning)
return self.predict_wishart_embedding(Xnew, kern, mean, covariance)

def predict_magnification(self, Xnew, kern=None, mean=True, covariance=True):
def predict_magnification(self, Xnew, kern=None, mean=True, covariance=True, dimensions=None):
"""
Predict the magnification factor as
sqrt(det(G))
for each point N in Xnew
for each point N in Xnew.
:param bool mean: whether to include the mean of the wishart embedding.
:param bool covariance: whether to include the covariance of the wishart embedding.
:param array-like dimensions: which dimensions of the input space to use [defaults to self.get_most_significant_input_dimensions()[:2]]
"""
G = self.predict_wishard_embedding(Xnew, kern, mean, covariance)
if dimensions is None:
dimensions = self.get_most_significant_input_dimensions()[:2]
G = G[:, dimensions][:,:,dimensions]
from ..util.linalg import jitchol
mag = np.empty(Xnew.shape[0])
for n in range(Xnew.shape[0]):
Expand Down
150 changes: 75 additions & 75 deletions GPy/kern/src/sde_stationary.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,10 @@

class sde_RBF(RBF):
"""
Class provide extra functionality to transfer this covariance function into
SDE form.
Radial Basis Function kernel:
.. math::
Expand All @@ -30,144 +30,144 @@ def sde_update_gradient_full(self, gradients):
Update gradient in the order in which parameters are represented in the
kernel
"""

self.variance.gradient = gradients[0]
self.lengthscale.gradient = gradients[1]

def sde(self):
"""
Return the state space representation of the covariance.
"""
def sde(self):
"""
Return the state space representation of the covariance.
"""

N = 10# approximation order ( number of terms in exponent series expansion)
roots_rounding_decimals = 6
fn = np.math.factorial(N)

fn = np.math.factorial(N)

kappa = 1.0/2.0/self.lengthscale**2

Qc = np.array((self.variance*np.sqrt(np.pi/kappa)*fn*(4*kappa)**N,),)

pp = np.zeros((2*N+1,)) # array of polynomial coefficients from higher power to lower

for n in range(0, N+1): # (2N+1) - number of polynomial coefficients
pp[2*(N-n)] = fn*(4.0*kappa)**(N-n)/np.math.factorial(n)*(-1)**n
pp[2*(N-n)] = fn*(4.0*kappa)**(N-n)/np.math.factorial(n)*(-1)**n

pp = sp.poly1d(pp)
roots = sp.roots(pp)
roots = sp.roots(pp)

neg_real_part_roots = roots[np.round(np.real(roots) ,roots_rounding_decimals) < 0]
aa = sp.poly1d(neg_real_part_roots, r=True).coeffs
aa = sp.poly1d(neg_real_part_roots, r=True).coeffs

F = np.diag(np.ones((N-1,)),1)
F[-1,:] = -aa[-1:0:-1]

L= np.zeros((N,1))
L[N-1,0] = 1

H = np.zeros((1,N))
H[0,0] = 1

# Infinite covariance:
Pinf = sp.linalg.solve_lyapunov(F, -np.dot(L,np.dot( Qc[0,0],L.T)))
Pinf = 0.5*(Pinf + Pinf.T)
# Allocating space for derivatives
# Allocating space for derivatives
dF = np.empty([F.shape[0],F.shape[1],2])
dQc = np.empty([Qc.shape[0],Qc.shape[1],2])
dPinf = np.empty([Pinf.shape[0],Pinf.shape[1],2])
dQc = np.empty([Qc.shape[0],Qc.shape[1],2])
dPinf = np.empty([Pinf.shape[0],Pinf.shape[1],2])

# Derivatives:
dFvariance = np.zeros(F.shape)
dFlengthscale = np.zeros(F.shape)
dFlengthscale[-1,:] = -aa[-1:0:-1]/self.lengthscale * np.arange(-N,0,1)

dQcvariance = Qc/self.variance
dQclengthscale = np.array(((self.variance*np.sqrt(2*np.pi)*fn*2**N*self.lengthscale**(-2*N)*(1-2*N,),)))
dQclengthscale = np.array(((self.variance*np.sqrt(2*np.pi)*fn*2**N*self.lengthscale**(-2*N)*(1-2*N,),)))

dPinf_variance = Pinf/self.variance

lp = Pinf.shape[0]
coeff = np.arange(1,lp+1).reshape(lp,1) + np.arange(1,lp+1).reshape(1,lp) - 2
coeff[np.mod(coeff,2) != 0] = 0
dPinf_lengthscale = -1/self.lengthscale*Pinf*coeff
dF[:,:,0] = dFvariance
dF[:,:,1] = dFlengthscale
dQc[:,:,0] = dQcvariance
dQc[:,:,1] = dQclengthscale
dPinf[:,:,0] = dPinf_variance

dF[:,:,0] = dFvariance
dF[:,:,1] = dFlengthscale
dQc[:,:,0] = dQcvariance
dQc[:,:,1] = dQclengthscale
dPinf[:,:,0] = dPinf_variance
dPinf[:,:,1] = dPinf_lengthscale

P0 = Pinf.copy()
dP0 = dPinf.copy()

# Benefits of this are not very sound. Helps only in one case:
# SVD Kalman + RBF kernel
import GPy.models.state_space_main as ssm
(F, L, Qc, H, Pinf, P0, dF, dQc, dPinf,dP0, T) = ssm.balance_ss_model(F, L, Qc, H, Pinf, P0, dF, dQc, dPinf, dP0 )

return (F, L, Qc, H, Pinf, P0, dF, dQc, dPinf, dP0)

class sde_Exponential(Exponential):
"""
Class provide extra functionality to transfer this covariance function into
SDE form.
Exponential kernel:
.. math::
k(r) = \sigma^2 \exp \\bigg(- \\frac{1}{2} r \\bigg) \\ \\ \\ \\ \text{ where } r = \sqrt{\sum_{i=1}^{input dim} \frac{(x_i-y_i)^2}{\ell_i^2} }
"""

def sde_update_gradient_full(self, gradients):
"""
Update gradient in the order in which parameters are represented in the
kernel
"""

self.variance.gradient = gradients[0]
self.lengthscale.gradient = gradients[1]
def sde(self):
"""
Return the state space representation of the covariance.
"""

def sde(self):
"""
Return the state space representation of the covariance.
"""
variance = float(self.variance.values)
lengthscale = float(self.lengthscale)
lengthscale = float(self.lengthscale)

F = np.array(((-1.0/lengthscale,),))
L = np.array(((1.0,),))
Qc = np.array( ((2.0*variance/lengthscale,),) )
H = np.array(((1.0,),))
Pinf = np.array(((variance,),))
P0 = Pinf.copy()
dF = np.zeros((1,1,2));
dQc = np.zeros((1,1,2));
L = np.array(((1.0,),))
Qc = np.array( ((2.0*variance/lengthscale,),) )
H = np.array(((1.0,),))
Pinf = np.array(((variance,),))
P0 = Pinf.copy()

dF = np.zeros((1,1,2));
dQc = np.zeros((1,1,2));
dPinf = np.zeros((1,1,2));
dF[:,:,0] = 0.0

dF[:,:,0] = 0.0
dF[:,:,1] = 1.0/lengthscale**2
dQc[:,:,0] = 2.0/lengthscale

dQc[:,:,0] = 2.0/lengthscale
dQc[:,:,1] = -2.0*variance/lengthscale**2

dPinf[:,:,0] = 1.0
dPinf[:,:,1] = 0.0
dP0 = dPinf.copy()

dP0 = dPinf.copy()

return (F, L, Qc, H, Pinf, P0, dF, dQc, dPinf, dP0)

class sde_RatQuad(RatQuad):
"""
Class provide extra functionality to transfer this covariance function into
SDE form.
Rational Quadratic kernel:
.. math::
Expand All @@ -177,16 +177,16 @@ class sde_RatQuad(RatQuad):
"""

def sde(self):
"""
Return the state space representation of the covariance.
"""
"""
Return the state space representation of the covariance.
"""

assert False, 'Not Implemented'

# Params to use:

# self.lengthscale
# self.variance
#self.power
#return (F, L, Qc, H, Pinf, dF, dQc, dPinf)

#return (F, L, Qc, H, Pinf, dF, dQc, dPinf)
Loading

0 comments on commit 8d08da3

Please sign in to comment.