Skip to content

Perturbational analysis by causality-aware generative model for single-cell RNA-sequencing data

License

Notifications You must be signed in to change notification settings

ShaokunAn/scCausalVI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

scCausalVI

Documentation Status PyPI Downloads PyPI Downloads

scCausalVI is a causality-aware generative model designed to disentangle inherent cellular heterogeneity from treatment effects in single-cell RNA sequencing data, particularly in case-control studies.

scCausalVI Overview

Introduction

scCausalVI addresses a major analytical challenge in single-cell RNA sequencing: distinguishing inherent cellular variation from extrinsic cell-state-specific effects induced by external stimuli. The model:

  • Decouples intrinsic cellular states from treatment effects through a deep structural causal network
  • Explicitly models causal mechanisms governing cell-state-specific responses
  • Enables cross-condition in silico prediction
  • Accounts for technical variations in multi-source data integration
  • Identifies treatment-responsive populations and molecular signatures

Key Features of scCausalVI

  • Interpretable and disentangled latent representation
  • Data integration
  • In silico perturbation
  • Identification of treatment-responsive populations

Installation

There are several alternative options to install scCausalVI:

  1. Install the latest version of scCausalVI via pip:

    pip install scCausalVI
  2. Or install the development version via pip:

    pip install git+https://github.com/ShaokunAn/scCausalVI.git

Examples

See examples at our documentation site.

Reproducing Results

In order to reproduce paper results visit here.

References

For a detailed explanation of our methods, please refer to our bioRxiv manuscript.

Contact

Feel free to contact us by mail. If you find a bug, please use the issue tracker.