-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
import os | ||
import random | ||
import argparse | ||
import numpy as np | ||
from time import time | ||
import torch | ||
from torch.utils.data import TensorDataset, DataLoader | ||
import bert_codes.tokenization as tokenization | ||
from train import data2fea, get_entity_dict, compare_entity_dict # NOTE: it can trigger the utils.check_args() to delete train/dev log files. | ||
import ipdb | ||
|
||
# Configuration | ||
############################################################################################## | ||
DICT_LABEL = {"症状": [1, 2], "病史": [3, 4], "症状_程度": [5, 6], "症状_生理": [7, 8], "部位": [9, 10], | ||
"检查": [11, 12], "诊断": [13, 14], "治疗": [15, 16], "药物": [17, 18], "预后": [19, 20], | ||
"器材": [21, 22], "人群": [23, 24], "科室": [25, 26], "时间": [27, 28], "其他": [29, 30]} | ||
DICT_LABEL_REV = dict() | ||
for k, v in DICT_LABEL.items(): | ||
DICT_LABEL_REV.update({v[0]: k}) | ||
DICT_LABEL_REV.update({v[1]: k}) | ||
|
||
t_config = time() | ||
# set args | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--gpu_ids', type=str, default='2, 3') | ||
# training parameter | ||
parser.add_argument('--test_batch_size', type=int, default=256) | ||
parser.add_argument('--float16', type=bool, default=True) # only sm >= 7.0 (tensorcores) | ||
parser.add_argument('--seed', type=int, default=42) | ||
# data and model dir | ||
parser.add_argument('--test_dir', type=str, default='./datasets/ner_test.json') | ||
parser.add_argument('--feature_test_dir', type=str, default='./datasets/fea_ner_test.json') | ||
parser.add_argument('--vocab_file', type=str, default='./pretrained_models/bert_chinese/vocab.txt') | ||
parser.add_argument('--checkpoint_dir', type=str, default='check_points/base_ner') | ||
parser.add_argument('--predict_file', type=str, default='predict_log.txt') | ||
args = parser.parse_args() | ||
|
||
# tokenizer initialization | ||
tokenizer = tokenization.BertTokenizer(vocab_file=args.vocab_file, do_lower_case=True) | ||
|
||
# set seed | ||
random.seed(args.seed) | ||
np.random.seed(args.seed) | ||
torch.manual_seed(args.seed) | ||
|
||
# set gpu | ||
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids | ||
device = torch.device("cuda") | ||
n_gpu = torch.cuda.device_count() | ||
if n_gpu > 0: | ||
torch.cuda.manual_seed_all(args.seed) | ||
print("device %s n_gpu %d" % (device, n_gpu)) | ||
print("device: {} n_gpu: {} 16-bits training: {}".format(device, n_gpu, args.float16)) | ||
|
||
# load model | ||
print('***** Loading Model *****') | ||
model = torch.load(args.checkpoint_dir + "/best_model.pth") | ||
model.to(device) | ||
|
||
print("Configuration Time: {}".format(time() - t_config)) | ||
|
||
|
||
# Predict Batch | ||
############################################################################################## | ||
def prepare_for_test(): | ||
global args | ||
# get features | ||
test_features = data2fea(load_path=args.test_dir, save_path=args.feature_test_dir) | ||
# get test dataloader | ||
test_input_ids = torch.tensor([f['input_ids'] for f in test_features], dtype=torch.long) | ||
test_input_mask = torch.tensor([f['input_mask'] for f in test_features], dtype=torch.long) | ||
test_input_segments = torch.tensor([f['input_segments'] for f in test_features], dtype=torch.long) | ||
test_input_tags = torch.tensor([f['input_tags'] for f in test_features], dtype=torch.long) | ||
test_tensor = TensorDataset(test_input_ids, test_input_mask, test_input_segments, test_input_tags) | ||
test_dataloader = DataLoader(test_tensor, batch_size=args.test_batch_size, shuffle=True) | ||
print("Test-{}".format(len(test_features))) | ||
return test_features, test_dataloader | ||
|
||
|
||
def print_and_save_batch_dict(input_id, d_true, d_pred): | ||
global args, tokenizer | ||
lst_token = tokenizer.convert_ids_to_tokens(input_id.cpu().numpy()) | ||
lst_token = [t.replace("##", "") if t.startswith("##") else t for t in lst_token] | ||
s_token = "".join(lst_token).replace("[PAD]", "").replace("[CLS]", "").replace("[SEP]", "") | ||
with open(args.predict_file, 'a') as aw_dev: | ||
aw_dev.write("Sent: {} \n".format(s_token)) | ||
s_true, s_pred = "", "" | ||
for k, lst_v in d_true.items(): | ||
if len(lst_v) > 0: | ||
s_true = s_true + ">" + k + ": " | ||
for i_m, m in enumerate(lst_v): | ||
lst_m = m.split("_") | ||
idx_s, idx_e = int(lst_m[0]), int(lst_m[1]) | ||
s_true = s_true + "".join(lst_token[idx_s:idx_e]) + "(" + lst_m[0] + ", " + lst_m[1] + "); " | ||
for k, lst_v in d_pred.items(): | ||
if len(lst_v) > 0: | ||
s_pred = s_pred + ">" + k + ": " | ||
for m in lst_v: | ||
lst_m = m.split("_") | ||
idx_s, idx_e = int(lst_m[0]), int(lst_m[1]) | ||
s_pred = s_pred + "".join(lst_token[idx_s:idx_e]) + "(" + lst_m[0] + ", " + lst_m[1] + "); " | ||
with open(args.predict_file, 'a') as f: | ||
f.write("True: {} \n".format(s_true)) | ||
f.write("Pred: {} \n".format(s_pred)) | ||
f.write("\n") | ||
return None | ||
|
||
|
||
def predict(): | ||
global args, model, DICT_LABEL | ||
print("***** Preprocessing *****") | ||
_, test_dataloader = prepare_for_test() | ||
|
||
print("***** Predict *****") | ||
model.eval() | ||
d_res = {k: {"precision": [], "recall": [], "f1": []} for k in DICT_LABEL.keys()} | ||
with torch.no_grad(): | ||
for step, batch in enumerate(test_dataloader): | ||
batch = tuple(t.to(device) for t in batch) | ||
input_ids, input_mask, input_segments, input_tags = batch | ||
logits = model(input_ids=input_ids, | ||
token_type_ids=input_segments, | ||
attention_mask=input_mask) | ||
logits = logits.detach().cpu().numpy() # [bs, len, dim] | ||
pred_batch = np.argmax(logits, axis=-1) # get predicted labels: [bs,len] | ||
true_batch = input_tags.detach().cpu().numpy() # get true labels | ||
# calculate each sample in the batch | ||
batch_size = true_batch.shape[0] | ||
for i in range(batch_size): | ||
true_batch_now = get_entity_dict(true_batch[i]) | ||
pred_batch_now = get_entity_dict(pred_batch[i]) | ||
input_id_now = input_ids[i] | ||
res_batch = compare_entity_dict(d_true=true_batch_now, d_pred=pred_batch_now) | ||
print_and_save_batch_dict(input_id=input_id_now, d_true=true_batch_now, d_pred=pred_batch_now) | ||
for k, v in res_batch.items(): | ||
d_res[k]["precision"].append(v["precision"]) | ||
d_res[k]["recall"].append(v["recall"]) | ||
d_res[k]["f1"].append(v["f1"]) | ||
with open(args.predict_file, 'a') as f: | ||
f.write("Result of batch {} is: \n {} \n".format(step, res_batch)) | ||
f.write(" ---------------------------------------------------- \n") | ||
print("Result of batch {} is: \n {} \n ".format(step, res_batch)) | ||
# get final scores | ||
f1 = np.mean([np.mean(v["f1"]) for k, v in d_res.items()]) | ||
with open(args.predict_file, 'a') as f: | ||
f.write("F1 of all batches is: {:.4f} \n".format(f1)) | ||
f.write(" ---------------------------------------------------- \n") | ||
print("F1 of all batches is: {:.4f} \n".format(f1)) | ||
return f1 | ||
|
||
|
||
# Main | ||
############################################################################################## | ||
if __name__ == '__main__': | ||
res = predict() | ||
|