-
Notifications
You must be signed in to change notification settings - Fork 1
Using GPU environment (CONDA) for tensorflow on DEVTOP server
fialhocoelho edited this page Dec 20, 2018
·
2 revisions
$ ssh -X [email protected]
To access your files inside the environment, they just need to be inside the directory /data
of any server in the manycore cluster.
Add the following snippet to your bash config file ( ~/.bashrc
):
#Path_var
export PATH="$PATH:/usr/local/cuda/bin"
export PATH="$PATH:/usr/local/cuda/lib64"
export PATH="$PATH:/opt/tools/miniconda3/bin"
export PATH="$PATH:$HOME/bin"
#LD_LIBRARY_PATH_var
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/lib/x86_64-linux-gnu"
After that:
source ~/.bashrc
$ conda create -n your_env_name
$ source activate your_env_name
$ pip install /opt/tools/tensorflow_pkg/tensorflow-1.11.0-cp36-cp36m-linux_x86_64.whl --user
$ conda install application_name
Second option:
$ pip install application_name
E.g.
$ conda install keras
$ conda install jupyter notebook
$ curl -sSL https://github.com/SPRACE/calo-simulation/raw/master/python/mnist_mlp.py | python3
IMPORTANT: Don't forget to install keras in your environment.
$ source deactivate