-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #313 from SNEWS2/JostMigenda/restoreModelNotebooks
Restore Model Notebooks
- Loading branch information
Showing
23 changed files
with
4,332 additions
and
950 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Bollig 2016 Models\n", | ||
"\n", | ||
"Data from Mirizzi et al., particular the models that go into Figure 17. Models (s11.2c and s27.0c) taken from the Garching Supernova archive (https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/data/Bollig2016/) with permission for use in SNEWS2.0.\n", | ||
"\n", | ||
"Reference: Mirizzi et al. Rivista del Nuovo Cimento Vol 39 N. 1-2 (2016)\n", | ||
"- doi:10.1393/ncr/i2016-10120-8\n", | ||
"- arXiv:1508.00785" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import matplotlib as mpl\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"from astropy import units as u \n", | ||
"\n", | ||
"from snewpy.neutrino import Flavor, MassHierarchy\n", | ||
"from snewpy.models.ccsn import Bollig_2016\n", | ||
"from snewpy.flavor_transformation import NoTransformation, AdiabaticMSW, ThreeFlavorDecoherence\n", | ||
"\n", | ||
"mpl.rc('font', size=16)\n", | ||
"%matplotlib inline" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Initialize Models\n", | ||
"\n", | ||
"To start, let’s see what progenitors are available for the `Bollig_2016` model. We can use the `param` property to view all physics parameters and their possible values:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"Bollig_2016.param" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We’ll initialise both of these progenitors. If this is the first time you’re using a progenitor, snewpy will automatically download the required data files for you." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"m11 = Bollig_2016(progenitor_mass=11.2*u.solMass)\n", | ||
"m27 = Bollig_2016(progenitor_mass=27*u.solMass)\n", | ||
"\n", | ||
"m11" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Finally, let’s plot the luminosity of different neutrino flavors for this model. (Note that the `Bollig_2016` simulations didn’t distinguish between $\\nu_x$ and $\\bar{\\nu}_x$, so both have the same luminosity.)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fig, axes = plt.subplots(1, 2, figsize=(12, 5), sharex=True, sharey=True, tight_layout=True)\n", | ||
"\n", | ||
"for i, model in enumerate([m11, m27]):\n", | ||
" ax = axes[i]\n", | ||
" for flavor in Flavor:\n", | ||
" ax.plot(model.time, model.luminosity[flavor]/1e51, # Report luminosity in units foe/s\n", | ||
" label=flavor.to_tex(),\n", | ||
" color='C0' if flavor.is_electron else 'C1',\n", | ||
" ls='-' if flavor.is_neutrino else ':',\n", | ||
" lw=2)\n", | ||
" ax.set(xlim=(0.0, 0.35),\n", | ||
" xlabel=r'$t-t_{\\rm bounce}$ [s]',\n", | ||
" title=r'{}: {} $M_\\odot$'.format(model.metadata['EOS'], model.metadata['Progenitor mass'].value))\n", | ||
" ax.grid()\n", | ||
" ax.legend(loc='upper right', ncol=2, fontsize=18)\n", | ||
"\n", | ||
"axes[0].set(ylabel=r'luminosity [foe s$^{-1}$]');" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Initial and Oscillated Spectra\n", | ||
"\n", | ||
"Plot the neutrino spectra at the source and after the requested flavor transformation has been applied.\n", | ||
"\n", | ||
"### Adiabatic MSW Flavor Transformation: Normal mass ordering" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Adiabatic MSW effect. NMO is used by default.\n", | ||
"xform_nmo = AdiabaticMSW()\n", | ||
"\n", | ||
"# Energy array and time to compute spectra.\n", | ||
"# Note that any convenient units can be used and the calculation will remain internally consistent.\n", | ||
"E = np.linspace(0,100,201) * u.MeV\n", | ||
"t = 50*u.ms\n", | ||
"\n", | ||
"ispec = model.get_initial_spectra(t, E)\n", | ||
"ospec_nmo = model.get_transformed_spectra(t, E, xform_nmo)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fig, axes = plt.subplots(1,2, figsize=(12,5), sharex=True, sharey=True, tight_layout=True)\n", | ||
"\n", | ||
"for i, spec in enumerate([ispec, ospec_nmo]):\n", | ||
" ax = axes[i]\n", | ||
" for flavor in Flavor:\n", | ||
" ax.plot(E, spec[flavor],\n", | ||
" label=flavor.to_tex(),\n", | ||
" color='C0' if flavor.is_electron else 'C1',\n", | ||
" ls='-' if flavor.is_neutrino else ':', lw=2,\n", | ||
" alpha=0.7)\n", | ||
"\n", | ||
" ax.set(xlabel=r'$E$ [{}]'.format(E.unit),\n", | ||
" title='Initial Spectra: $t = ${:.1f}'.format(t) if i==0 else 'Oscillated Spectra: $t = ${:.1f}'.format(t))\n", | ||
" ax.grid()\n", | ||
" ax.legend(loc='upper right', ncol=2, fontsize=16)\n", | ||
"\n", | ||
"ax = axes[0]\n", | ||
"ax.set(ylabel=r'flux [erg$^{-1}$ s$^{-1}$]')\n", | ||
"\n", | ||
"fig.tight_layout();" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3.9.5 ('snews')", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.5" | ||
}, | ||
"vscode": { | ||
"interpreter": { | ||
"hash": "e2528887d751495e023d57d695389d9a04f4c4d2e5866aaf6dc03a1ed45c573e" | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.