Based on FastestDet by dog-qiuqiu.
Run install.sh to create a Conda environment and to install other dependencies.
Dataset should be formatted like any other YOLO dataset:
.
├── train
│ ├── 000001.jpg
│ ├── 000001.txt
│ ├── 000002.jpg
│ ├── 000002.txt
│ ├── 000003.jpg
│ └── 000003.txt
└── val
├── 000043.jpg
├── 000043.txt
├── 000057.jpg
├── 000057.txt
├── 000070.jpg
└── 000070.txt
Annotation files can contain multiple detections, one detection per line following the class_id x y w h
format.
Example of a single annotation file:
11 0.344192634561 0.611 0.416430594901 0.262
14 0.509915014164 0.51 0.974504249292 0.972
- Download RLB dataset
- Extract the downloaded archive
- Run the
build.sh
script to generatetrain
andtest
folders - Move these folders into a
RLB_dataset
folder - Move the
RLB_dataset
folder into the dataset folder of this repo
This dataset contains augmented data using this dataset as background images.
- Download COCO 2017 train and val images/annotations from here
- Use JSON2YOLO to convert
instances_train2017.json
andinstances_val2017.json
to YOLO format - Extract train images into a
train
folder, do the same for val images into atest
folder - Move these folders into a
COCO2017_dataset
folder - Move the
COCO2017_dataset
folder into the dataset folder of this repo
Use onnx_to_int8_ncnn.sh.
Example for a model.onnx
file:
./onnx_to_int8_ncnn.sh ./checkpoints/2024-06-04_16-18-39/20_0.24095053259538232