Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix res_transformers returning an empty dataframe #163

Merged
merged 1 commit into from
Jan 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/Changelog.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

## Unreleased

- {gh-pr}`163` {gh-issue}`158` Fix `ElectricalNetwork.res_transformers` returning an empty dataframe
when max_power is not set.
- {gh-pr}`151` Require Python 3.10 or newer.

## Version 0.6.0
Expand Down
186 changes: 71 additions & 115 deletions roseau/load_flow/network.py
Original file line number Diff line number Diff line change
Expand Up @@ -769,63 +769,44 @@ def res_branches(self) -> pd.DataFrame:
- `potential2`: The complex potential of the second bus (in Volts) for the given phase.
"""
self._warn_invalid_results()
res_list = []
res_dict = {
"branch_id": [],
"phase": [],
"branch_type": [],
"current1": [],
"current2": [],
"power1": [],
"power2": [],
"potential1": [],
"potential2": [],
}
dtypes = {c: _DTYPES[c] for c in res_dict}
for branch_id, branch in self.branches.items():
currents1, currents2 = branch._res_currents_getter(warning=False)
powers1, powers2 = branch._res_powers_getter(warning=False)
potentials1, potentials2 = branch._res_potentials_getter(warning=False)
res_list.extend(
{
"branch_id": branch_id,
"phase": phase,
"branch_type": branch.branch_type,
"current1": i1,
"current2": None,
"power1": s1,
"power2": None,
"potential1": v1,
"potential2": None,
}
for i1, s1, v1, phase in zip(currents1, powers1, potentials1, branch.phases1, strict=True)
)
res_list.extend(
{
"branch_id": branch_id,
"phase": phase,
"branch_type": branch.branch_type,
"current1": None,
"current2": i2,
"power1": None,
"power2": s2,
"potential1": None,
"potential2": v2,
}
for i2, s2, v2, phase in zip(currents2, powers2, potentials2, branch.phases2, strict=True)
)

columns = [
"branch_id",
"phase",
"branch_type",
"current1",
"current2",
"power1",
"power2",
"potential1",
"potential2",
]
dtypes = {c: _DTYPES[c] for c in columns}
return (
pd.DataFrame.from_records(res_list, columns=columns)
.astype(dtypes)
# aggregate x1 and x2 for the same phase for I, V, S, ...
.groupby(["branch_id", "phase", "branch_type"], observed=True)
# there are 2 values of I, V, S, ...; only one is not nan -> keep it
.mean()
# if all values are nan -> drop the row (the phase does not exist)
.dropna(how="all")
.reset_index(level="branch_type")
)
phases = sorted(set(branch.phases1) | set(branch.phases2))
for phase in phases:
if phase in branch.phases1:
idx1 = branch.phases2.index(phase)
i1, s1, v1 = currents1[idx1], powers1[idx1], potentials1[idx1]
else:
i1, s1, v1 = None, None, None
if phase in branch.phases2:
idx2 = branch.phases2.index(phase)
i2, s2, v2 = currents2[idx2], powers2[idx2], potentials2[idx2]
else:
i2, s2, v2 = None, None, None
res_dict["branch_id"].append(branch_id)
res_dict["phase"].append(phase)
res_dict["branch_type"].append(branch.branch_type)
res_dict["current1"].append(i1)
res_dict["current2"].append(i2)
res_dict["power1"].append(s1)
res_dict["power2"].append(s2)
res_dict["potential1"].append(v1)
res_dict["potential2"].append(v2)
return pd.DataFrame(res_dict).astype(dtypes).set_index(["branch_id", "phase"])

@property
def res_transformers(self) -> pd.DataFrame:
Expand All @@ -852,7 +833,19 @@ def res_transformers(self) -> pd.DataFrame:
- `max_power`: The maximum power loading (in VoltAmps) of the transformer.
"""
self._warn_invalid_results()
res_list = []
res_dict = {
"transformer_id": [],
"phase": [],
"current1": [],
"current2": [],
"power1": [],
"power2": [],
"potential1": [],
"potential2": [],
"max_power": [],
"violated": [],
}
dtypes = {c: _DTYPES[c] for c in res_dict}
for branch in self.branches.values():
if not isinstance(branch, Transformer):
continue
Expand All @@ -863,65 +856,29 @@ def res_transformers(self) -> pd.DataFrame:
violated = None
if s_max is not None:
violated = max(abs(sum(powers1)), abs(sum(powers2))) > s_max
res_list.extend(
{
"transformer_id": branch.id,
"phase": phase,
"current1": i1,
"current2": None,
"power1": s1,
"power2": None,
"potential1": v1,
"potential2": None,
"max_power": s_max,
"violated": violated,
}
for i1, s1, v1, phase in zip(currents1, powers1, potentials1, branch.phases1, strict=True)
)
res_list.extend(
{
"transformer_id": branch.id,
"phase": phase,
"current1": None,
"current2": i2,
"power1": None,
"power2": s2,
"potential1": None,
"potential2": v2,
"max_power": s_max,
"violated": violated,
}
for i2, s2, v2, phase in zip(currents2, powers2, potentials2, branch.phases2, strict=True)
)

columns = [
"transformer_id",
"phase",
"current1",
"current2",
"power1",
"power2",
"potential1",
"potential2",
"max_power",
"violated",
]
dtypes = {c: _DTYPES[c] for c in columns}
res = (
pd.DataFrame.from_records(res_list, columns=columns)
.astype(dtypes)
# aggregate x1 and x2 for the same phase for I, V, S, ...
.groupby(["transformer_id", "phase", "max_power", "violated"], observed=True)
# there are 2 values of I, V, S, ...; only one is not nan -> keep it
.mean()
# if all values are nan -> drop the row (the phase does not exist)
.dropna(how="all")
.reset_index(level=["max_power", "violated"])
)
# move the max_power and violated columns to the end
res["max_power"] = res.pop("max_power")
res["violated"] = res.pop("violated")
return res
phases = sorted(set(branch.phases1) | set(branch.phases2))
for phase in phases:
if phase in branch.phases1:
idx1 = branch.phases2.index(phase)
i1, s1, v1 = currents1[idx1], powers1[idx1], potentials1[idx1]
else:
i1, s1, v1 = None, None, None
if phase in branch.phases2:
idx2 = branch.phases2.index(phase)
i2, s2, v2 = currents2[idx2], powers2[idx2], potentials2[idx2]
else:
i2, s2, v2 = None, None, None
res_dict["transformer_id"].append(branch.id)
res_dict["phase"].append(phase)
res_dict["current1"].append(i1)
res_dict["current2"].append(i2)
res_dict["power1"].append(s1)
res_dict["power2"].append(s2)
res_dict["potential1"].append(v1)
res_dict["potential2"].append(v2)
res_dict["max_power"].append(s_max)
res_dict["violated"].append(violated)
return pd.DataFrame(res_dict).astype(dtypes).set_index(["transformer_id", "phase"])

@property
def res_lines(self) -> pd.DataFrame:
Expand Down Expand Up @@ -1003,8 +960,7 @@ def res_lines(self) -> pd.DataFrame:
res_dict["series_current"].append(i_series)
res_dict["max_current"].append(i_max)
res_dict["violated"].append(violated)
res = pd.DataFrame(res_dict).astype(dtypes).set_index(["line_id", "phase"])
return res
return pd.DataFrame(res_dict).astype(dtypes).set_index(["line_id", "phase"])

@property
def res_switches(self) -> pd.DataFrame:
Expand Down