Skip to content

Implemenation of the SVG(0) agent with extension of information asymmetric prior in PyTorch

License

Notifications You must be signed in to change notification settings

RobvanGastel/svg-priors

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Stochastic Value Gradients with Priors

A PyTorch implemenation of the SVG(0) algorithm with extension of KL regularized, and behavior priors.

Setup

Install the packages in requirements.txt.

Usage

Run experiments by using the following example command:

python main.py --name pendulum_svg0_kl_prior --a svg0_prior -c configs/svg0_kl_prior.yml

Arguments

--name: Name of the experiment
-d, --debug: Enable debug mode so model parameters are not stored.
-a, --alg: Algorithm selection, choices: {svg0, svg0_kl_prior}
-c, --config: Location of the config files, see /configs

Algorithms

  • SVG(0)
  • SVG(0) with KL regularized prior
  • SVG(∞)
  • SVG(0) with behavior priors

Results

TODO

References

  • Heess, N., Wayne, G., Silver, D., Lillicrap, T. P., Tassa, Y., & Erez, T. (2015). Learning Continuous Control Policies by Stochastic Value Gradients. CoRR, abs/1510.09142. Retrieved from http://arxiv.org/abs/1510.09142
  • Galashov, A., Jayakumar, S. M., Hasenclever, L., Tirumala, D., Schwarz, J., Desjardins, G., … Heess, N. (2019). Information asymmetry in KL-regularized RL. CoRR, abs/1905.01240. Retrieved from http://arxiv.org/abs/1905.01240
  • Tirumala, D., Galashov, A., Noh, H., Hasenclever, L., Pascanu, R., Schwarz, J., … Heess, N. (2022). Behavior Priors for Efficient Reinforcement Learning. Journal of Machine Learning Research, 23(221), 1–68. Retrieved from http://jmlr.org/papers/v23/20-1038.html

Acknowledgements

I would like to thank the authors of the following repository in particular. They were great help to me for understanding the implementation details of SVG0.

About

Implemenation of the SVG(0) agent with extension of information asymmetric prior in PyTorch

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages