Skip to content

Commit

Permalink
remove hellingerDiv_symm and rename hellingerDiv_symm' to `hellin…
Browse files Browse the repository at this point in the history
…gerDiv_symm`
  • Loading branch information
LorenzoLuccioli committed Nov 17, 2024
1 parent 1a37692 commit bbf8c64
Show file tree
Hide file tree
Showing 2 changed files with 3 additions and 8 deletions.
7 changes: 1 addition & 6 deletions TestingLowerBounds/Divergences/Hellinger/Hellinger.lean
Original file line number Diff line number Diff line change
Expand Up @@ -438,7 +438,7 @@ lemma toReal_hellingerDiv_symm (ha_pos : 0 < a) (ha : a < 1)
rw [← neg_sub, neg_mul, mul_inv_cancel₀, mul_neg, mul_inv_cancel₀ ha_pos.ne']
linarith

lemma hellingerDiv_symm' (ha_pos : 0 < a) (ha : a < 1) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
lemma hellingerDiv_symm (ha_pos : 0 < a) (ha : a < 1) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
ENNReal.ofReal (1 - a) * hellingerDiv a μ ν = ENNReal.ofReal a * hellingerDiv (1 - a) ν μ := by
rw [← ENNReal.toReal_eq_toReal_iff', ENNReal.toReal_mul, ENNReal.toReal_mul]
rotate_left
Expand All @@ -448,11 +448,6 @@ lemma hellingerDiv_symm' (ha_pos : 0 < a) (ha : a < 1) [IsFiniteMeasure μ] [IsF
rw [ENNReal.toReal_ofReal ha_pos.le, ENNReal.toReal_ofReal (by linarith)]
exact toReal_hellingerDiv_symm ha_pos ha

lemma hellingerDiv_symm (ha_pos : 0 < a) (ha : a < 1)
[IsProbabilityMeasure μ] [IsProbabilityMeasure ν] :
ENNReal.ofReal (1 - a) * hellingerDiv a μ ν = ENNReal.ofReal a * hellingerDiv (1 - a) ν μ :=
hellingerDiv_symm' ha_pos ha

-- lemma hellingerDiv_zero_nonneg (μ ν : Measure α) :
-- 0 ≤ hellingerDiv 0 μ ν := hellingerDiv_zero _ _ ▸ EReal.coe_ennreal_nonneg _

Expand Down
4 changes: 2 additions & 2 deletions blueprint/src/sections/hellinger_alpha.tex
Original file line number Diff line number Diff line change
Expand Up @@ -78,10 +78,10 @@ \section{Hellinger alpha-divergences}

\begin{lemma}
\label{lem:hellingerAlpha_symm}
\lean{ProbabilityTheory.hellingerDiv_symm'}
\lean{ProbabilityTheory.hellingerDiv_symm}
\leanok
\uses{def:hellingerAlpha}
For $\alpha \in (0, 1)$ and finite measures $\mu, \nu$ with $\mu(\mathcal X) = \nu(\mathcal X)$, $(1 - \alpha) \He_\alpha(\mu, \nu) = \alpha \He_{1 - \alpha}(\nu, \mu)$.
For $\alpha \in (0, 1)$ and finite measures $\mu, \nu$, $(1 - \alpha) \He_\alpha(\mu, \nu) = \alpha \He_{1 - \alpha}(\nu, \mu)$.
\end{lemma}

\begin{proof}\leanok
Expand Down

0 comments on commit bbf8c64

Please sign in to comment.