Skip to content

Commit

Permalink
blueprint: add asymptotic chernoff testing bound
Browse files Browse the repository at this point in the history
  • Loading branch information
RemyDegenne committed Apr 8, 2024
1 parent 34cbce4 commit 3d65997
Showing 1 changed file with 48 additions and 0 deletions.
48 changes: 48 additions & 0 deletions blueprint/src/sections/testing.tex
Original file line number Diff line number Diff line change
Expand Up @@ -262,3 +262,51 @@ \section{Product spaces}
Use Lemma~\ref{lem:renyi_prod_n} in Lemma~\ref{lem:testing_bound_renyi_one_add}
\end{proof}

\begin{theorem}
\label{thm:testing_bound_chernoff}
%\lean{}
%\leanok
\uses{def:Chernoff}
Let $\mu, \nu$ be two probability measures on $\mathcal X$ and let $(E_n)_{n \in \mathbb{N}}$ be events on $\mathcal X^n$. For all $\gamma \in (0,1)$,
\begin{align*}
\limsup_{n \to +\infty} \frac{1}{n}\log \frac{1}{\gamma \mu^{\otimes n}(E_n) + (1 - \gamma)\nu^{\otimes n}(E_n^c)}
\le C(\mu, \nu)
\: .
\end{align*}
\end{theorem}

\begin{proof}
\uses{cor:kl_change_measure}
Let $\xi$ be a probability measure on $\mathcal X$ and $\beta > 0$. By Corollary~\ref{cor:kl_change_measure},
\begin{align*}
\mu^{\otimes n}(E_n) e^{\KL(\xi^{\otimes n}, \mu^{\otimes n}) + n\beta}
&\ge \xi^{\otimes n}(E_n) - \xi^{\otimes n}\left\{ \log\frac{d \xi^{\otimes n}}{d \mu^{\otimes n}} - \KL(\xi^{\otimes n}, \mu^{\otimes n}) > n\beta \right\}
\: , \\
\nu^{\otimes n}(E_n^c) e^{\KL(\xi^{\otimes n}, \nu^{\otimes n}) + n\beta}
&\ge \xi^{\otimes n}(E_n^c) - \xi^{\otimes n}\left\{ \log\frac{d \xi^{\otimes n}}{d \nu^{\otimes n}} - \KL(\xi^{\otimes n}, \nu^{\otimes n}) > n\beta \right\}
\: .
\end{align*}
We sum both inequalities with weights $\gamma$ and $1-\gamma$ respectively and use that each $\KL$ on the left is less than their max, as well as $\xi^{\otimes n}(E_n) + \xi^{\otimes n}(E_n^c) = 1$.
\begin{align*}
&e^{n\beta} (\gamma\mu^{\otimes n}(E_n) + (1-\gamma)\nu^{\otimes n}(E_n^c)) e^{\max\{\KL(\xi^{\otimes n}, \mu^{\otimes n}), \KL(\xi^{\otimes n}, \nu^{\otimes n})\}}
\\
&\ge \min\{\gamma, 1-\gamma\} - \gamma\xi^{\otimes n}\left\{ \log\frac{d \xi^{\otimes n}}{d \mu^{\otimes n}} - \KL(\xi^{\otimes n}, \mu^{\otimes n}) > n\beta \right\}
- (1 - \gamma)\xi^{\otimes n}\left\{ \log\frac{d \xi^{\otimes n}}{d \nu^{\otimes n}} - \KL(\xi^{\otimes n}, \nu^{\otimes n}) > n\beta \right\}
\: .
\end{align*}
Let $p_{n,\mu}(\beta)$ and $p_{n, \nu}(\beta)$ be the two probabilities on the right hand side. By the law of large numbers, both tend to 0 when $n$ tends to $+\infty$.
In particular, for $n$ large enough, the right hand side is positive and we can take logarithms on both sides. We also use the tensorization of $\KL$ (Lemma TODO).
\begin{align*}
& n \max\{\KL(\xi, \mu), \KL(\xi, \nu)\}
\\
&\ge \log \frac{1}{\gamma \mu^{\otimes n}(E_n) + (1 - \gamma)\nu^{\otimes n}(E_n^c)} + \log (\min\{\gamma, 1-\gamma\} - \gamma p_{n, \mu}(\beta) - (1 - \gamma) p_{n, \nu}(\beta)) - n\beta
\end{align*}
For $n \to +\infty$,
\begin{align*}
\max\{\KL(\xi, \mu), \KL(\xi, \nu)\}
\ge \limsup_{n \to + \infty}\frac{1}{n}\log \frac{1}{\gamma \mu^{\otimes n}(E_n) + (1 - \gamma)\nu^{\otimes n}(E_n^c)} - \beta
\end{align*}
Since $\beta > 0$ is arbitrary, we can take a supremum over $\beta$ on the right.


\end{proof}

0 comments on commit 3d65997

Please sign in to comment.