Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add ONNX parsing for SimplifiedLayerNormalization #3129

Merged
merged 13 commits into from
Aug 8, 2024
98 changes: 98 additions & 0 deletions src/onnx/parse_simplified_layer_normalization.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

// ONNXRunTime implementation for reference:
// https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/core/providers/cpu/nn/layer_norm_impl.cc

struct parse_simplified_layer_normalization : op_parser<parse_simplified_layer_normalization>
{
std::vector<op_desc> operators() const { return {{"SimplifiedLayerNormalization"}}; }

std::vector<instruction_ref> parse(const op_desc& /*opd*/,
const onnx_parser& parser,
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
int64_t axis = -1;
if(contains(info.attributes, "axis"))
{
axis = parser.parse_value(info.attributes.at("axis")).at<int64_t>();
}
float epsilon = 1e-5f;
if(contains(info.attributes, "epsilon"))
{
epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>();
}
if(contains(info.attributes, "stash_type"))
{
std::cerr << "WARNING: SIMPLIFIED_LAYER_NORMALIZATION attribute stash_type is only "
"used for training.\n";
}

if(args.size() != 2)
{
MIGRAPHX_THROW(
"PARSE_SIMPLIFIED_LAYER_NORMALIZATION: invalid input count - expected 2 got " +
std::to_string(args.size()));
}

auto x = args.at(0);
auto scale = args.at(1);

auto x_shape = x->get_shape();
auto x_dtype = x_shape.type();
int64_t x_rank = x_shape.ndim();
axis = axis < 0 ? axis + x_rank : axis;

if(x_rank < 2 or x_rank > 3)
{
MIGRAPHX_THROW("PARSE_SIMPLIFIED_LAYER_NORMALIZATION: invalid input shape");
}

auto x_sq = info.add_common_op("mul", x, x);
auto rms = info.add_instruction(make_op("reduce_mean", {{"axes", {axis}}}), x_sq);
auto mean = rms;
epsilon =
(x_dtype == migraphx::shape::half_type and std::abs(epsilon) < 1e-7) ? 1e-7 : epsilon;
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why are we limiting the epsilon for half type? It looks like a user input

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That is how we handle epsilon in our regular LayerNorm parser, so I did the same here.

auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_dtype}, {epsilon}});
rms = info.add_common_op("add", rms, eps);
auto rrms = info.add_instruction(make_op("rsqrt"), rms);
auto result = info.add_common_op("mul", x, rrms);
result = info.add_common_op("mul", result, scale);

return {result, mean, rrms};
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this being matched with LayerNorm kernel on the GPU target ?

}
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
50 changes: 50 additions & 0 deletions test/onnx/gen_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -10539,6 +10539,56 @@ def sign_test():
return ([node], [x], [y])


@onnx_test()
def simplified_layer_normalization_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 2, 4])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 2, 4])

node = onnx.helper.make_node(
'SimplifiedLayerNormalization',
inputs=['x', 'scale'],
outputs=['y'],
axis=-1,
epsilon=1e-5,
stash_type=1,
)

return ([node], [x, scale], [y])


@onnx_test()
def simplified_layer_normalization_invalid_input_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 2, 2, 4])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 2, 2, 4])

node = onnx.helper.make_node(
'SimplifiedLayerNormalization',
inputs=['x', 'scale'],
outputs=['y'],
)

return ([node], [x, scale], [y])


@onnx_test()
def simplified_layer_normalization_invalid_n_args_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 2, 4])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [4])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT16,
[1, 2, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 2, 4])

node = onnx.helper.make_node(
'SimplifiedLayerNormalization',
inputs=['x', 'scale', 'bias'],
outputs=['y'],
)

return ([node], [x, scale, bias], [y])


@onnx_test()
def sin_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
Expand Down
39 changes: 36 additions & 3 deletions test/onnx/include/onnx_test_utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -171,9 +171,7 @@ make_layer_norm(const std::vector<int64_t>& input_shape,
{
bias = mm->add_parameter("bias", {dtype, scale_bias_shape});
}

auto eps = mm->add_literal(migraphx::literal{dtype, {eps_value}});

auto eps = mm->add_literal(migraphx::literal{dtype, {eps_value}});
auto mean = mm->add_instruction(migraphx::make_op("reduce_mean", {{"axes", reduce_axes}}), x);
auto x_sub_mean = add_common_op(*mm, migraphx::make_op("sub"), {x, mean});
auto x_sqdiff_mean = add_common_op(*mm, migraphx::make_op("sqdiff"), {x, mean});
Expand Down Expand Up @@ -201,7 +199,42 @@ make_layer_norm(const std::vector<int64_t>& input_shape,
{
mm->add_instruction(migraphx::make_op("add"), {scaled, bias_bcast});
}
return p;
}

inline migraphx::program
make_simplified_layer_norm(const std::vector<int64_t>& input_shape,
const std::vector<int64_t>& skip_shape,
const std::vector<int64_t>& scale_shape,
const int axis,
const float eps_value = 1e-5f,
const migraphx::shape::type_t dtype = migraphx::shape::half_type)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", {dtype, input_shape});
migraphx::instruction_ref skip;
migraphx::instruction_ref scale;
if(skip_shape.empty())
{
scale = mm->add_parameter("scale", {dtype, scale_shape});
}
else
{
skip = mm->add_parameter("skip", {dtype, skip_shape});
scale = mm->add_parameter("gamma", {dtype, scale_shape});
x = add_common_op(*mm, migraphx::make_op("add"), {x, skip});
}

auto eps = mm->add_literal(migraphx::literal{dtype, {eps_value}});

auto x_sq = add_common_op(*mm, migraphx::make_op("mul"), {x, x});
auto norm_axis = axis < 0 ? axis + x->get_shape().lens().size() : axis;
auto rms = mm->add_instruction(migraphx::make_op("reduce_mean", {{"axes", {norm_axis}}}), x_sq);
rms = add_common_op(*mm, migraphx::make_op("add"), {rms, eps});
auto rrms = mm->add_instruction(migraphx::make_op("rsqrt"), {rms});
auto result = add_common_op(*mm, migraphx::make_op("mul"), {x, rrms});
result = add_common_op(*mm, migraphx::make_op("mul"), {result, scale});
return p;
}

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/

#include <onnx_test.hpp>

TEST_CASE(simplified_layer_normalization_invalid_input_test)
{
EXPECT(test::throws(
[&] { migraphx::parse_onnx("simplified_layer_normalization_invalid_input_test.onnx"); }));
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/

#include <onnx_test.hpp>

TEST_CASE(simplified_layer_normalization_invalid_n_args_test)
{
EXPECT(test::throws(
[&] { migraphx::parse_onnx("simplified_layer_normalization_invalid_n_args_test.onnx"); }));
}
35 changes: 35 additions & 0 deletions test/onnx/parse/simplified_layer_normalization_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/

#include <onnx_test.hpp>
#include <onnx_test_utils.hpp>

TEST_CASE(simplified_layer_normalization_test)
{
migraphx::program p =
make_simplified_layer_norm({2, 2, 4}, {}, {4}, -1, 1e-5f, migraphx::shape::half_type);

auto prog = optimize_onnx("simplified_layer_normalization_test.onnx");
EXPECT(p == prog);
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
 1simplified_layer_normalization_invalid_input_test:¯
+
x
scaley"SimplifiedLayerNormalization1simplified_layer_normalization_invalid_input_testZ
x





Z
scale



b
y





B
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
 2simplified_layer_normalization_invalid_n_args_test:Ê
1
x
scale
biasy"SimplifiedLayerNormalization2simplified_layer_normalization_invalid_n_args_testZ
x




Z
scale



Z
bias




b
y




B
25 changes: 25 additions & 0 deletions test/onnx/simplified_layer_normalization_test.onnx
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
 #simplified_layer_normalization_test:Õ
g
x
scaley"SimplifiedLayerNormalization*
axisÿÿÿÿÿÿÿÿÿ *
epsilon¬Å'7 *

stash_type #simplified_layer_normalization_testZ
x




Z
scale



b
y




B
Loading
Loading