Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

First iteration Refactoring for normFact and R2 function #14

Merged
merged 9 commits into from
Aug 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 15 additions & 9 deletions .github/workflows/r-conda.yml
Original file line number Diff line number Diff line change
Expand Up @@ -20,22 +20,29 @@ jobs:
strategy:
fail-fast: false
matrix:
os: [ windows-latest, ubuntu-latest, macos-latest]
os: [ windows-latest, ubuntu-latest, macos-14]
experimental: [false]
include:
- os: macos-14-arm64
experimental: true
runs-on: ${{ matrix.os }}
continue-on-error: ${{ matrix.experimental }}
defaults:
run:
shell: bash -l {0}

# Steps represent a sequence of tasks that will be executed as part of the job
steps:
# Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it
- uses: actions/checkout@v2
- uses: actions/checkout@v4
- name: Install wget
if: ${{ matrix.os == 'windows-latest' }}
run: choco install wget

- name: Sets env vars for osx-64
run: echo "CONDA_SUBDIR=osx-64" >> $GITHUB_ENV
if: ${{ matrix.os == 'macos-14' }}
- name: Create conda environment
uses: conda-incubator/setup-miniconda@v2
uses: conda-incubator/setup-miniconda@v3
with:
activate-environment: recetox-waveica-dev
auto-update-conda: true
Expand All @@ -45,11 +52,10 @@ jobs:
conda init bash
conda env list
- name: Fetch input data
run: wget -P tests/testthat/test-data -i tests/remote-files/fetch_input_data.txt
- name: Fetch batchwise waveica results
run: wget -P tests/testthat/test-data/batchwise-correction -i tests/remote-files/fetch_waveica_batchwise.txt
- name: Fetch nonbatchwise waveica results
run: wget -P tests/testthat/test-data/nonbatchwise-correction -i tests/remote-files/fetch_waveica_nonbatchwise.txt
run: |
wget -P tests/testthat/test-data -i tests/remote-files/fetch_input_data.txt
wget -P tests/testthat/test-data/batchwise-correction -i tests/remote-files/fetch_waveica_batchwise.txt
wget -P tests/testthat/test-data/nonbatchwise-correction -i tests/remote-files/fetch_waveica_nonbatchwise.txt
- name: setup Rtools
if: ${{ matrix.os == 'windows-latest' }}
uses: r-windows/install-rtools@master
Expand Down
185 changes: 92 additions & 93 deletions R/R2.R
Original file line number Diff line number Diff line change
@@ -1,131 +1,130 @@
R2 <- function(poi, V, poiType, pval = T) {
#
# R2(poi,V,poiType)
#
# Args:
# - V is a p*k matrix, where the rows corresponds to the samples
# - poi is a matrix p*l, representing the phenotypes of interest
# - poiType (1*l) is the types of poi: 'continuous' (then a linear
# regression is used) or 'categorical' (then the mean by class is used)
#
# Outputs:
# - R2(l), higher R^2 value between a column of V and poi(l)
# - idxCorr(l), index of the column of V giving the higher R^2 value (if many,
# takes the first one)
# - allR2(k,l), R2 value for column k of V with poi l
#
# IF pval =TRUE, return also: #
# - pv(l) smaller p-value association between a column of V and poi(l)
# - idxcorr2(l) index of the column of V giving the smaller p-value (if many,
# # takes the first one)
# - allpv(k,l), p-value for column k of V with poi l
#
# if missing information in poi, remove the corresponding samples in the R2 computation
linear_regression_estimation <- function(component_values, poi_values) {
coefs <- coef(lm(component_values ~ as.numeric(poi_values)))
estimated_values <- coefs[2] * as.numeric(poi_values) + coefs[1]
return(estimated_values)
}

class_mean_estimation <- function(component_values, poi_values) {
classes <- unique(poi_values)
estimated_values <- rep(NA, length(component_values))
for (class in classes) {
class_indices <- which(poi_values == class)
estimated_values[class_indices] <- mean(component_values[class_indices])
}
return(estimated_values)
}

if (is.vector(V)) {
V <- matrix(V, ncol = 1)
#' Compute R-squared and P-values between Phenotypes of Interest and Components
#'
#' This function computes the R-squared and optionally the p-values between phenotypes of interest (POI) and components.
#'
#' @param poi Matrix (p x l). Representing the phenotypes of interest.
#' @param components Matrix (p x k). The components where the rows correspond to the samples.
#' @param poi_types Character vector (length l). Types of POI: 'continuous' (for linear regression) or 'categorical' (for class mean).
#' @param pval Logical. If TRUE, compute p-values in addition to R-squared values. Default is TRUE.
#' @return A list containing:
#' \item{R2}{Vector (length l). Highest R-squared value between a column of `components` and each POI.}
#' \item{idxCorr}{Vector (length l). Index of the column of `components` giving the highest R-squared value.}
#' \item{allR2}{Matrix (k x l). R-squared values for each column of `components` with each POI.}
#' \item{pv}{Vector (length l). Smallest p-value association between a column of `components` and each POI (if `pval` is TRUE).}
#' \item{idxCorr2}{Vector (length l). Index of the column of `components` giving the smallest p-value (if `pval` is TRUE).}
#' \item{allpv}{Matrix (k x l). P-values for each column of `components` with each POI (if `pval` is TRUE).}
#' @export
R2 <- function(poi, components, poi_types, pval = TRUE) {
if (is.vector(components)) {
components <- matrix(components, ncol = 1)
}
if (is.vector(poi)) {
poi <- matrix(poi, nrow = length(poi))
}

p <- nrow(V) # number of samples
k <- ncol(V) # number of components
l <- length(poiType) # number of cf/poi to test
if (is.null(l)) {
stop("POI type(s) neeeded")
n_samples <- nrow(components)
n_components <- ncol(components)
n_poi <- length(poi_types)

if (is.null(n_poi)) {
stop("POI type(s) needed")
}
p2 <- nrow(poi)
l2 <- ncol(poi)

if (l2 != l) { # checking poi and poiType dimensions compatiblity
if (p2 == l) { # if poi is transposed (l*p)
poi_rows <- nrow(poi)
poi_cols <- ncol(poi)

if (poi_cols != n_poi) {
if (poi_rows == n_poi) {
poi <- t(poi)
warning("Transposing poi to match poiType dimension")
p2 <- nrow(poi)
warning("Transposing POI to match POI types dimension")
poi_rows <- nrow(poi)
} else {
print(poi)
print(poiType)
stop("poi dimensions doesn't match poiType dimension")
stop("POI dimensions do not match POI types dimension")
}
}


if (p != p2) { # checking poi and V dimensions compatiblity
if (p2 == k) {
warnings("Transposing V to match poi dimension")
V <- t(V)
k <- p
p <- p2
if (n_samples != poi_rows) {
if (poi_rows == n_components) {
warning("Transposing components to match POI dimension")
components <- t(components)
n_components <- n_samples
n_samples <- poi_rows
} else {
stop("poi and V dimensions incompatible")
stop("POI and components dimensions incompatible")
}
}






R2 <- rep(-1, l)
names(R2) <- colnames(poi)
idxcorr <- R2
R2_tmp <- matrix(rep(-1, k * l), k, l, dimnames = list(colnames(V), colnames(poi))) # r2_tmp(k,l) hold the R2 value for column k of V with poi l
R2_values <- rep(-1, n_poi)
names(R2_values) <- colnames(poi)
idx_corr <- R2_values
R2_tmp <- matrix(rep(-1, n_components * n_poi), n_components, n_poi, dimnames = list(colnames(components), colnames(poi)))

if (pval) {
pv <- R2
idxcorr2 <- R2
pv_tmp <- R2_tmp # r2_tmp(k,l) hold the R2 value for column k of V with poi l
p_values <- R2_values
idx_corr2 <- R2_values
p_values_tmp <- R2_tmp
}

for (cmpt in 1:k) { # for each column of V
cmpt2an <- V[, cmpt]
for (ipoi in 1:l) {
idx_finite <- is.finite(as.factor(poi[, ipoi]))
poi2an <- poi[idx_finite, ipoi]
cmpt2an_finite <- cmpt2an[idx_finite]
if (poiType[ipoi] == "continuous") { # estimation by linear regression
coefs <- coef(lm(cmpt2an_finite ~ as.numeric(poi2an)))
cmpt2an_est <- coefs[2] * as.numeric(poi2an) + coefs[1]
nc <- 2
} else if (poiType[ipoi] == "categorical") { # estimation by classe mean
classes <- unique(poi2an)
nc <- length(classes)
cmpt2an_est <- rep(NA, length(cmpt2an_finite))
for (icl in 1:length(classes)) {
idxClasse <- which(poi2an == classes[icl])
cmpt2an_est[idxClasse] <- mean(cmpt2an_finite[idxClasse])
}
for (component_idx in 1:n_components) {
component_values <- components[, component_idx]
for (poi_idx in 1:n_poi) {
finite_indices <- is.finite(as.factor(poi[, poi_idx]))
poi_values <- poi[finite_indices, poi_idx]
finite_component_values <- component_values[finite_indices]

if (poi_types[poi_idx] == "continuous") {
estimated_values <- linear_regression_estimation(finite_component_values, poi_values)
num_classes <- 2
} else if (poi_types[poi_idx] == "categorical") {
estimated_values <- class_mean_estimation(finite_component_values, poi_values)
num_classes <- length(unique(poi_values))
} else {
stop("Incorrect poiType. Select 'continuous' or 'categorical'. ")
stop("Incorrect poi_type. Select 'continuous' or 'categorical'.")
}
sse <- sum((cmpt2an_finite - cmpt2an_est)^2)
sst <- sum((cmpt2an_finite - mean(cmpt2an_finite))^2)
R2_tmp[cmpt, ipoi] <- 1 - sse / sst

sse <- sum((finite_component_values - estimated_values)^2)
sst <- sum((finite_component_values - mean(finite_component_values))^2)
R2_tmp[component_idx, poi_idx] <- 1 - sse / sst

if (pval) {
F <- ((sst - sse) / (nc - 1)) / (sse / (p - nc))
pv_tmp[cmpt, ipoi] <- 1 - pf(F, nc - 1, p - nc)
if (!is.finite(pv_tmp[cmpt, ipoi])) {
warning(paste("Non finite p-value for component ", cmpt, " (pv=", pv_tmp[cmpt, ipoi], ", F=", F, "), assigning NA", sep = ""))
pv_tmp[cmpt, ipoi] <- NA
F_value <- ((sst - sse) / (num_classes - 1)) / (sse / (n_samples - num_classes))
p_values_tmp[component_idx, poi_idx] <- 1 - pf(F_value, num_classes - 1, n_samples - num_classes)
if (!is.finite(p_values_tmp[component_idx, poi_idx])) {
warning(sprintf("Non-finite p-value for component %d (pv=%g, F=%g), assigning NA", component_idx, p_values_tmp[component_idx, poi_idx], F_value))
p_values_tmp[component_idx, poi_idx] <- NA
}
}
}
}

for (ipoi in 1:l) {
for (poi_idx in 1:n_poi) {
if (pval) {
pv[ipoi] <- min(pv_tmp[, ipoi])
idxcorr2[ipoi] <- which(pv_tmp[, ipoi] == pv[ipoi])[1] # if more than one component gives the best R2, takes the first one
p_values[poi_idx] <- min(p_values_tmp[, poi_idx])
idx_corr2[poi_idx] <- which(p_values_tmp[, poi_idx] == p_values[poi_idx])[1]
}
R2[ipoi] <- max(R2_tmp[, ipoi])
idxcorr[ipoi] <- which(R2_tmp[, ipoi] == R2[ipoi])[1] # if more than one component gives the best R2, takes the first one
R2_values[poi_idx] <- max(R2_tmp[, poi_idx])
idx_corr[poi_idx] <- which(R2_tmp[, poi_idx] == R2_values[poi_idx])[1]
}

if (pval) {
return(list(R2 = R2, idxcorr = idxcorr, allR2 = R2_tmp, pv = pv, idxcorr2 = idxcorr2, allpv = pv_tmp))
return(list(R2 = R2_values, idxCorr = idx_corr, allR2 = R2_tmp, pv = p_values, idxCorr2 = idx_corr2, allpv = p_values_tmp))
} else {
return(list(R2 = R2, idxcorr = idxcorr, allR2 = R2_tmp))
return(list(R2 = R2_values, idxCorr = idx_corr, allR2 = R2_tmp))
}
}
14 changes: 7 additions & 7 deletions R/WaveICA.R
Original file line number Diff line number Diff line change
Expand Up @@ -107,10 +107,10 @@ waveica_nonbatchwise <- function(data, wf = "haar", injection_order, alpha = 0,
#' @param wf String. Wavelet function, the default is "haar".
#' @param batch Vector. Batch number of each sample.
#' @param factorization String. Matrix factorization method, options are ["stICA", "SVD"]. The default is "stICA".
#' @param group Vector, optional. Type of a sample (blank, sample, QC) numerically encoded to blank:0, sample:1, QC:2.
#' @param group Vector, optional. Type of a sample (blank, sample, QC, standard) numerically encoded to blank:0, sample:1, QC:2, standard:3.
#' @param K Integer. The maximal number of independent components (for ICA) or singular vectors (SVD). The default is 20.
#' @param t Float between 0 and 1. The threshold to consider a component associate with the batch. The default is 0.05.
#' @param t2 Float between 0 and 1. The threshold to consider a component associate with the group. The default is 0.05.
#' @param batch_threshold Float between 0 and 1. The threshold to consider a component associate with the batch. The default is 0.05.
#' @param group_threshold Float between 0 and 1. The threshold to consider a component associate with the group. The default is 0.05.
#' @param alpha Float between 0 and 1. The trade-off value between the independence of samples and those
#' of variables. The default is 0.
#' @return Dataframe. Feature table with intensities corrected of batch effects.
Expand All @@ -121,8 +121,8 @@ waveica <- function(data,
factorization = "stICA",
group = NULL,
K = 20,
t = 0.05,
t2 = 0.05,
batch_threshold = 0.05,
group_threshold = 0.05,
alpha = 0) {
if (!factorization %in% c("stICA", "SVD")) {
stop("The factorization method should be 'stICA' or 'SVD'.")
Expand All @@ -137,8 +137,8 @@ waveica <- function(data,
cat(paste("Performing matrix factorization...\n"))
for (i in (1:index)) {
data_coef <- coef[[i]]
data_coef_ICA <- normFact(fact = factorization, X = t(data_coef), ref = batch, refType = "categorical", k = K, t = t, ref2 = group, refType2 = "categorical", t2 = t2, alpha)
data_wave_ICA[[i]] <- t(data_coef_ICA$Xn)
data_coef_ICA <- normFact(factorization_method = factorization, data_matrix = t(data_coef), batch_vector = batch, batch_type = "categorical", rank = K, batch_threshold = batch_threshold, group_matrix = group, group_types = "categorical", group_threshold = group_threshold, alpha)
data_wave_ICA[[i]] <- t(data_coef_ICA$normalized_matrix)
}
data_wave <- wt_reconstruction(data, data_wave_ICA, wf)

Expand Down
Loading
Loading