forked from dengkuistat/WaveICA
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d5960f6
commit c6f6569
Showing
4 changed files
with
206 additions
and
179 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,131 +1,130 @@ | ||
R2 <- function(poi, V, poiType, pval = T) { | ||
# | ||
# R2(poi,V,poiType) | ||
# | ||
# Args: | ||
# - V is a p*k matrix, where the rows corresponds to the samples | ||
# - poi is a matrix p*l, representing the phenotypes of interest | ||
# - poiType (1*l) is the types of poi: 'continuous' (then a linear | ||
# regression is used) or 'categorical' (then the mean by class is used) | ||
# | ||
# Outputs: | ||
# - R2(l), higher R^2 value between a column of V and poi(l) | ||
# - idxCorr(l), index of the column of V giving the higher R^2 value (if many, | ||
# takes the first one) | ||
# - allR2(k,l), R2 value for column k of V with poi l | ||
# | ||
# IF pval =TRUE, return also: # | ||
# - pv(l) smaller p-value association between a column of V and poi(l) | ||
# - idxcorr2(l) index of the column of V giving the smaller p-value (if many, | ||
# # takes the first one) | ||
# - allpv(k,l), p-value for column k of V with poi l | ||
# | ||
# if missing information in poi, remove the corresponding samples in the R2 computation | ||
linear_regression_estimation <- function(component_values, poi_values) { | ||
coefs <- coef(lm(component_values ~ as.numeric(poi_values))) | ||
estimated_values <- coefs[2] * as.numeric(poi_values) + coefs[1] | ||
return(estimated_values) | ||
} | ||
|
||
class_mean_estimation <- function(component_values, poi_values) { | ||
classes <- unique(poi_values) | ||
estimated_values <- rep(NA, length(component_values)) | ||
for (class in classes) { | ||
class_indices <- which(poi_values == class) | ||
estimated_values[class_indices] <- mean(component_values[class_indices]) | ||
} | ||
return(estimated_values) | ||
} | ||
|
||
if (is.vector(V)) { | ||
V <- matrix(V, ncol = 1) | ||
#' Compute R-squared and P-values between Phenotypes of Interest and Components | ||
#' | ||
#' This function computes the R-squared and optionally the p-values between phenotypes of interest (POI) and components. | ||
#' | ||
#' @param poi Matrix (p x l). Representing the phenotypes of interest. | ||
#' @param components Matrix (p x k). The components where the rows correspond to the samples. | ||
#' @param poi_types Character vector (length l). Types of POI: 'continuous' (for linear regression) or 'categorical' (for class mean). | ||
#' @param pval Logical. If TRUE, compute p-values in addition to R-squared values. Default is TRUE. | ||
#' @return A list containing: | ||
#' \item{R2}{Vector (length l). Highest R-squared value between a column of `components` and each POI.} | ||
#' \item{idxCorr}{Vector (length l). Index of the column of `components` giving the highest R-squared value.} | ||
#' \item{allR2}{Matrix (k x l). R-squared values for each column of `components` with each POI.} | ||
#' \item{pv}{Vector (length l). Smallest p-value association between a column of `components` and each POI (if `pval` is TRUE).} | ||
#' \item{idxCorr2}{Vector (length l). Index of the column of `components` giving the smallest p-value (if `pval` is TRUE).} | ||
#' \item{allpv}{Matrix (k x l). P-values for each column of `components` with each POI (if `pval` is TRUE).} | ||
#' @export | ||
R2 <- function(poi, components, poi_types, pval = TRUE) { | ||
if (is.vector(components)) { | ||
components <- matrix(components, ncol = 1) | ||
} | ||
if (is.vector(poi)) { | ||
poi <- matrix(poi, nrow = length(poi)) | ||
} | ||
|
||
p <- nrow(V) # number of samples | ||
k <- ncol(V) # number of components | ||
l <- length(poiType) # number of cf/poi to test | ||
if (is.null(l)) { | ||
stop("POI type(s) neeeded") | ||
n_samples <- nrow(components) | ||
n_components <- ncol(components) | ||
n_poi <- length(poi_types) | ||
|
||
if (is.null(n_poi)) { | ||
stop("POI type(s) needed") | ||
} | ||
p2 <- nrow(poi) | ||
l2 <- ncol(poi) | ||
|
||
if (l2 != l) { # checking poi and poiType dimensions compatiblity | ||
if (p2 == l) { # if poi is transposed (l*p) | ||
poi_rows <- nrow(poi) | ||
poi_cols <- ncol(poi) | ||
|
||
if (poi_cols != n_poi) { | ||
if (poi_rows == n_poi) { | ||
poi <- t(poi) | ||
warning("Transposing poi to match poiType dimension") | ||
p2 <- nrow(poi) | ||
warning("Transposing POI to match POI types dimension") | ||
poi_rows <- nrow(poi) | ||
} else { | ||
print(poi) | ||
print(poiType) | ||
stop("poi dimensions doesn't match poiType dimension") | ||
stop("POI dimensions do not match POI types dimension") | ||
} | ||
} | ||
|
||
|
||
if (p != p2) { # checking poi and V dimensions compatiblity | ||
if (p2 == k) { | ||
warnings("Transposing V to match poi dimension") | ||
V <- t(V) | ||
k <- p | ||
p <- p2 | ||
if (n_samples != poi_rows) { | ||
if (poi_rows == n_components) { | ||
warning("Transposing components to match POI dimension") | ||
components <- t(components) | ||
n_components <- n_samples | ||
n_samples <- poi_rows | ||
} else { | ||
stop("poi and V dimensions incompatible") | ||
stop("POI and components dimensions incompatible") | ||
} | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
||
R2 <- rep(-1, l) | ||
names(R2) <- colnames(poi) | ||
idxcorr <- R2 | ||
R2_tmp <- matrix(rep(-1, k * l), k, l, dimnames = list(colnames(V), colnames(poi))) # r2_tmp(k,l) hold the R2 value for column k of V with poi l | ||
R2_values <- rep(-1, n_poi) | ||
names(R2_values) <- colnames(poi) | ||
idx_corr <- R2_values | ||
R2_tmp <- matrix(rep(-1, n_components * n_poi), n_components, n_poi, dimnames = list(colnames(components), colnames(poi))) | ||
|
||
if (pval) { | ||
pv <- R2 | ||
idxcorr2 <- R2 | ||
pv_tmp <- R2_tmp # r2_tmp(k,l) hold the R2 value for column k of V with poi l | ||
p_values <- R2_values | ||
idx_corr2 <- R2_values | ||
p_values_tmp <- R2_tmp | ||
} | ||
|
||
for (cmpt in 1:k) { # for each column of V | ||
cmpt2an <- V[, cmpt] | ||
for (ipoi in 1:l) { | ||
idx_finite <- is.finite(as.factor(poi[, ipoi])) | ||
poi2an <- poi[idx_finite, ipoi] | ||
cmpt2an_finite <- cmpt2an[idx_finite] | ||
if (poiType[ipoi] == "continuous") { # estimation by linear regression | ||
coefs <- coef(lm(cmpt2an_finite ~ as.numeric(poi2an))) | ||
cmpt2an_est <- coefs[2] * as.numeric(poi2an) + coefs[1] | ||
nc <- 2 | ||
} else if (poiType[ipoi] == "categorical") { # estimation by classe mean | ||
classes <- unique(poi2an) | ||
nc <- length(classes) | ||
cmpt2an_est <- rep(NA, length(cmpt2an_finite)) | ||
for (icl in 1:length(classes)) { | ||
idxClasse <- which(poi2an == classes[icl]) | ||
cmpt2an_est[idxClasse] <- mean(cmpt2an_finite[idxClasse]) | ||
} | ||
for (component_idx in 1:n_components) { | ||
component_values <- components[, component_idx] | ||
for (poi_idx in 1:n_poi) { | ||
finite_indices <- is.finite(as.factor(poi[, poi_idx])) | ||
poi_values <- poi[finite_indices, poi_idx] | ||
finite_component_values <- component_values[finite_indices] | ||
|
||
if (poi_types[poi_idx] == "continuous") { | ||
estimated_values <- linear_regression_estimation(finite_component_values, poi_values) | ||
num_classes <- 2 | ||
} else if (poi_types[poi_idx] == "categorical") { | ||
estimated_values <- class_mean_estimation(finite_component_values, poi_values) | ||
num_classes <- length(unique(poi_values)) | ||
} else { | ||
stop("Incorrect poiType. Select 'continuous' or 'categorical'. ") | ||
stop("Incorrect poi_type. Select 'continuous' or 'categorical'.") | ||
} | ||
sse <- sum((cmpt2an_finite - cmpt2an_est)^2) | ||
sst <- sum((cmpt2an_finite - mean(cmpt2an_finite))^2) | ||
R2_tmp[cmpt, ipoi] <- 1 - sse / sst | ||
|
||
sse <- sum((finite_component_values - estimated_values)^2) | ||
sst <- sum((finite_component_values - mean(finite_component_values))^2) | ||
R2_tmp[component_idx, poi_idx] <- 1 - sse / sst | ||
|
||
if (pval) { | ||
F <- ((sst - sse) / (nc - 1)) / (sse / (p - nc)) | ||
pv_tmp[cmpt, ipoi] <- 1 - pf(F, nc - 1, p - nc) | ||
if (!is.finite(pv_tmp[cmpt, ipoi])) { | ||
warning(paste("Non finite p-value for component ", cmpt, " (pv=", pv_tmp[cmpt, ipoi], ", F=", F, "), assigning NA", sep = "")) | ||
pv_tmp[cmpt, ipoi] <- NA | ||
F_value <- ((sst - sse) / (num_classes - 1)) / (sse / (n_samples - num_classes)) | ||
p_values_tmp[component_idx, poi_idx] <- 1 - pf(F_value, num_classes - 1, n_samples - num_classes) | ||
if (!is.finite(p_values_tmp[component_idx, poi_idx])) { | ||
warning(sprintf("Non-finite p-value for component %d (pv=%g, F=%g), assigning NA", component_idx, p_values_tmp[component_idx, poi_idx], F_value)) | ||
p_values_tmp[component_idx, poi_idx] <- NA | ||
} | ||
} | ||
} | ||
} | ||
|
||
for (ipoi in 1:l) { | ||
for (poi_idx in 1:n_poi) { | ||
if (pval) { | ||
pv[ipoi] <- min(pv_tmp[, ipoi]) | ||
idxcorr2[ipoi] <- which(pv_tmp[, ipoi] == pv[ipoi])[1] # if more than one component gives the best R2, takes the first one | ||
p_values[poi_idx] <- min(p_values_tmp[, poi_idx]) | ||
idx_corr2[poi_idx] <- which(p_values_tmp[, poi_idx] == p_values[poi_idx])[1] | ||
} | ||
R2[ipoi] <- max(R2_tmp[, ipoi]) | ||
idxcorr[ipoi] <- which(R2_tmp[, ipoi] == R2[ipoi])[1] # if more than one component gives the best R2, takes the first one | ||
R2_values[poi_idx] <- max(R2_tmp[, poi_idx]) | ||
idx_corr[poi_idx] <- which(R2_tmp[, poi_idx] == R2_values[poi_idx])[1] | ||
} | ||
|
||
if (pval) { | ||
return(list(R2 = R2, idxcorr = idxcorr, allR2 = R2_tmp, pv = pv, idxcorr2 = idxcorr2, allpv = pv_tmp)) | ||
return(list(R2 = R2_values, idxCorr = idx_corr, allR2 = R2_tmp, pv = p_values, idxCorr2 = idx_corr2, allpv = p_values_tmp)) | ||
} else { | ||
return(list(R2 = R2, idxcorr = idxcorr, allR2 = R2_tmp)) | ||
return(list(R2 = R2_values, idxCorr = idx_corr, allR2 = R2_tmp)) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.