Skip to content

Commit

Permalink
done some cleaning in the casscf and added a detailed example of Mult…
Browse files Browse the repository at this point in the history
…i state CASSCF
  • Loading branch information
eginer committed Feb 15, 2024
1 parent c58bf2a commit 22c99a0
Show file tree
Hide file tree
Showing 3 changed files with 85 additions and 6 deletions.
9 changes: 6 additions & 3 deletions src/casscf_cipsi/README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,15 @@ casscf

|CASSCF| program with the CIPSI algorithm.

Example of inputs
-----------------

Example of inputs for GROUND STATE calculations
-----------------------------------------------
NOTICE :: FOR EXCITED STATES CALCULATIONS SEE THE FILE "example_casscf_multistate.sh"

a) Small active space : standard CASSCF
---------------------------------------
Let's do O2 (triplet) in aug-cc-pvdz with the following geometry (xyz format, Bohr units)
3
2

O 0.0000000000 0.0000000000 -1.1408000000
O 0.0000000000 0.0000000000 1.1408000000
Expand Down Expand Up @@ -45,3 +47,4 @@ qp set casscf_cipsi small_active_space False
qp run casscf | tee ${EZFIO_FILE}.casscf_large.out
# you should find around -149.9046


16 changes: 13 additions & 3 deletions src/casscf_cipsi/casscf.irp.f
Original file line number Diff line number Diff line change
Expand Up @@ -54,14 +54,24 @@ subroutine run

call write_time(6)
call write_int(6,iteration,'CAS-SCF iteration = ')
call write_double(6,energy,'CAS-SCF energy = ')
call write_double(6,energy,'State-average CAS-SCF energy = ')
! if(n_states == 1)then
! call ezfio_get_casscf_cipsi_energy_pt2(E_PT2)
! call ezfio_get_casscf_cipsi_energy(PT2)
double precision :: delta_E_istate, e_av
e_av = 0.d0
do istate=1,N_states
call write_double(6,E_PT2(istate),'E + PT2 energy = ')
call write_double(6,PT2(istate),' PT2 = ')
e_av += state_average_weight(istate) * Ev(istate)
if(istate.gt.1)then
delta_E_istate = E_PT2(istate) - E_PT2(1)
write(*,'(A6,I2,A18,F16.10)')'state ',istate,' Delta E+PT2 = ',delta_E_istate
endif
write(*,'(A6,I2,A18,F16.10)')'state ',istate,' E + PT2 energy = ',E_PT2(istate)
write(*,'(A6,I2,A18,F16.10)')'state ',istate,' PT2 energy = ',PT2(istate)
! call write_double(6,E_PT2(istate),'E + PT2 energy = ')
! call write_double(6,PT2(istate),' PT2 = ')
enddo
call write_double(6,e_av,'State-average CAS-SCF energy bis = ')
call write_double(6,pt2_max,' PT2_MAX = ')
! endif

Expand Down
66 changes: 66 additions & 0 deletions src/casscf_cipsi/example_casscf_multistate.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
# This is an example for MULTI STATE CALCULATION STATE AVERAGE CASSCF
# We will compute 3 states on the O2 molecule
# The Ground state and 2 degenerate excited states
# Please follow carefully the tuto :)

##### PREPARING THE EZFIO
# Set the path to your QP2 directory
QP_ROOT=my_fancy_path
source ${QP_ROOT}/quantum_package.rc
# Create the EZFIO folder
qp create_ezfio -b aug-cc-pvdz O2.xyz -m 3 -a -o O2_avdz_multi_state
# Start with ROHF orbitals
qp run scf
# Freeze the 1s orbitals of the two oxygen
qp set_frozen_core

##### PREPARING THE ORBITALS WITH NATURAL ORBITALS OF A CIS
# Tell that you want 3 states in your WF
qp set determinants n_states 3
# Run a CIS wave function to start your calculation
qp run cis | tee ${EZFIO_FILE}.cis_3_states.out
# Save the STATE AVERAGE natural orbitals for having a balanced description
# This will also order the orbitals according to their occupation number
# Which makes the active space selection easyer !
qp run save_natorb | tee ${EZFIO_FILE}.natorb_3states.out

##### PREPARING A CIS GUESS WITHIN THE ACTIVE SPACE
# Set an active space which has the most of important excitations
# and that maintains symmetry : the ACTIVE ORBITALS are from """6 to 13"""

# YOU FIRST FREEZE THE VIRTUALS THAT ARE NOT IN THE ACTIVE SPACE
# !!!!! WE SET TO "-D" for DELETED !!!!
qp set_mo_class -c "[1-5]" -a "[6-13]" -d "[14-46]"
# You create a guess of CIS type WITHIN THE ACTIVE SPACE
qp run cis | tee ${EZFIO_FILE}.cis_3_states_active_space.out
# You tell to read the WFT stored (i.e. the guess we just created)
qp set determinants read_wf True

##### DOING THE CASSCF
### SETTING PROPERLY THE ACTIVE SPACE FOR CASSCF
# You set the active space WITH THE VIRTUAL ORBITALS !!!
# !!!!! NOW WE SET TO "-v" for VIRTUALS !!!!!
qp set_mo_class -c "[1-5]" -a "[6-13]" -v "[14-46]"

# You tell that it is a small actice space so the CIPSI can take all Slater determinants
qp set casscf_cipsi small_active_space True
# You specify the output file
output=${EZFIO_FILE}.casscf_3states.out
# You run the CASSCF calculation
qp run casscf | tee ${output}

# Some grep in order to get some numbers useful to check convergence
# State average energy
grep "State-average CAS-SCF energy =" $output | cut -d "=" -f 2 > data_e_average
# Delta E anticipated for State-average energy, only usefull to check convergence
grep "Predicted energy improvement =" $output | cut -d "=" -f 2 > data_improve
# Ground state energy
grep "state 1 E + PT2 energy" $output | cut -d "=" -f 2 > data_1
# First excited state energy
grep "state 2 E + PT2 energy" $output | cut -d "=" -f 2 > data_2
# First excitation energy
grep "state 2 Delta E+PT2" $output | cut -d "=" -f 2 > data_delta_E2
# Second excited state energy
grep "state 3 E + PT2 energy" $output | cut -d "=" -f 2 > data_3
# Second excitation energy
grep "state 3 Delta E+PT2" $output | cut -d "=" -f 2 > data_delta_E3

0 comments on commit 22c99a0

Please sign in to comment.