Skip to content

A curated list of Machine learning videos, links, projects and datasets to help you conquer the ML landscape in 6 months

Notifications You must be signed in to change notification settings

Pulak-Barman/ML-Roadmap-for-2022

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 

Repository files navigation

ML-Roadmap-for-2022

A curated list of Machine learning videos, links, projects and datasets to help you conquer the ML landscape in 6 months

Levels of Learning

  1. Testing the waters

  2. Gaining Conceptual depth

  3. Learning Practical Concepts

  4. Diving into different domains

  5. Pushing it with Projects

1. Testing the waters (Est. time 6-8 Weeks)

The goal of this level is to get you familiar with the ML universe. You will learn a bit of everything.

  1. Learn Python (Est. time - 2 weeks)

     1. Basics of Python - https://www.youtube.com/playlist?list=PLKnIA16_Rmvb1RYR-iTA_hzckhdONtSW4
     2. OOP in Python
        - Lecture 1 - https://www.youtube.com/watch?v=1s869EfxoDo
        - Lecture 2 - https://www.youtube.com/watch?v=8To-A6VPL90
     3. Advance Topics
        - File Handling - https://www.youtube.com/watch?v=ixEeeNjjOJ0
        - Exception Handling - https://www.youtube.com/watch?v=NIWwJbo-9_8
        - Regular Expressions - https://www.youtube.com/watch?v=K8L6KVGG-7o
        - Functional Programming - https://www.youtube.com/watch?v=SvK_GErE2nM
        - Basics of Flask - https://www.youtube.com/watch?v=swHI1H7DVsQ
     4. Practice Problems - https://docs.google.com/document/d/1E_xCNijOWZ4Bm7r7DVj-1OA-oUopEFmv4tRm0YNuFWQ/edit?usp=sharing
    
  2. Learn Numpy (Est. time 3 Days)

     1. Numpy Playlist - https://www.youtube.com/watch?v=CpPLLp3snK4&list=PLKnIA16_Rmvb-ToL3RQ_bwxG4_ND-0-DT
     2. Numpy Practice Problems - https://github.com/rougier/numpy-100
    
  3. Learn Pandas (Est. time 4 Days)

     1. Pandas Playlist - https://www.youtube.com/watch?v=kq9Vmg5d7Sk&list=PLKnIA16_RmvbR85fgbfVRKOiMokUKVupy
     2. Pandas Problems - https://github.com/ajcr/100-pandas-puzzles
    
  4. Learn Data Visualization (Est. time 1 Week)

     1. Matplotlib - https://www.youtube.com/playlist?list=PL-osiE80TeTvipOqomVEeZ1HRrcEvtZB_
     2. Seaborn - https://www.youtube.com/playlist?list=PLKnIA16_RmvbB1bFGjvS6a8T0mnqawejo
    
  5. Descriptive Statistics (Est. time 4 Days)

     1. Statistics Playlist - https://www.youtube.com/watch?v=tPhzDKjQBpo&list=PLKnIA16_RmvbVrE0eZO2bCaFln6jaNq-1
    
  6. Learn Data Analysis Process (Est. time 1 week)

     1. Playlist - https://www.youtube.com/watch?v=ZhacwtUR0SU&list=PLKnIA16_RmvZAqJzKstVHywcRNMn6pcGD
    
  7. Learn Exploratory Data Analysis (EDA) (Est. time 1 Week)

    1. Understanding your data - https://www.youtube.com/watch?v=mJlRTUuVr04
    2. Univariate Analysis - https://www.youtube.com/watch?v=4HyTlbHUKSw
    3. Bivariate and Multivariate Analysis - https://www.youtube.com/watch?v=6D3VtEfCw7w
    4. Pandas Profiling - https://www.youtube.com/watch?v=E69Lg2ZgOxg
    5. EDA on House Prices Dataset - https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python
    6. EDA on Titanic Dataset - https://www.kaggle.com/startupsci/titanic-data-science-solutions
    7. EDA on Haberman's Survival Dataset - https://www.kaggle.com/gokulkarthik/haberman-s-survival-exploratory-data-analysis
    8. EDA on Heart Disease Dataset - https://www.kaggle.com/kralmachine/analyzing-the-heart-disease
    9. EDA on IPL Dataset - https://www.kaggle.com/ash316/let-s-play-cricket
    10. EDA on Wine Review Dataset - https://www.kaggle.com/kabure/wine-review-s-eda-recommend-systems
    11. EDA on PIMA Diabetes Dataset - https://www.kaggle.com/shrutimechlearn/step-by-step-diabetes-classification-knn-detailed
    12. EDA on Breast Cancer Dataset - https://www.kaggle.com/kanncaa1/statistical-learning-tutorial-for-beginners
    13. EDA on Olympics Dataset - https://www.youtube.com/watch?v=5nQXhusiu7s
    14. EDA on Covid Data - https://www.youtube.com/watch?v=ll0aZVNnOP8
    15. WhatsApp Chat Analysis Project - https://www.youtube.com/watch?v=Q0QwvZKG_6Q
    
  8. Learn Machine Learning Basics (Est. time 1 Week)

     1. What is Machine Learning? https://www.youtube.com/watch?v=ZftI2fEz0Fw
     2. AI vs ML vs DL https://www.youtube.com/watch?v=1v3_AQ26jZ0
     3. Types of Machine Learning - https://www.youtube.com/watch?v=81ymPYEtFOw
     4. Batch Machine Learning - https://www.youtube.com/watch?v=nPrhFxEuTYU
     5. Online Machine Learning - https://www.youtube.com/watch?v=3oOipgCbLIk
     6. Instance based vs Model based learning - https://www.youtube.com/watch?v=ntAOq1ioTKo
     7. Challenges in Machine Learning - https://www.youtube.com/watch?v=WGUNAJki2S4
     8. Applications of Machine Learning - https://www.youtube.com/watch?v=UZio8TcTMrI
     9. Machine Learning Development Lifecycle - https://www.youtube.com/watch?v=iDbhQGz_rEo
     10. Data Engineer V Data Analyst V Data Scientist V ML Engineer - https://www.youtube.com/watch?v=93rKZs0MkgU
     11. How to frame a Machine Learning problem? - https://www.youtube.com/watch?v=A9SezQlvakw
     12. Installing and using software for data science - https://www.youtube.com/watch?v=82P5N2m41jE
     13. How to work with CSV files? - https://www.youtube.com/watch?v=a_XrmKlaGTs
     14. Working with JSON and SQL data - https://www.youtube.com/watch?v=fFwRC-fapIU
     15. Building an End to End Machine Learning Project - https://www.youtube.com/watch?v=dr7z7a_8lQw
    

2. Gaining Conceptual depth (Est. time 6-8 Weeks)

The goal of this level is to learn the core machine learning concepts and algorithms

  1. Learn about tensors (Est. time - 1 Day)

     1. What are Tensors? - https://www.youtube.com/watch?v=vVhD2EyS41Y
    
  2. Advance Statistics

     1. Covariance
     2. Pearson Correlation Coefficient
     3. QQ Plot
     4. Confidence Interval
     5. Hypothesis Testing
     6. Chisquare Test, Anova Test
     7. Playlist link - https://www.youtube.com/watch?v=qtaqvPAeEJY&list=PLKnIA16_Rmvbe9wDJGXc28KKr6lp5Jn2g 
    
  3. Probability Basics

     1. Conditional Probability
     2. Independent Events
     3. Bayes Theorem
     4. Uniform Distribution
     5. Binomial Distribution
     6. Bernaulli Distribution
     7. Poission Distribution
     8. Playlist Link - https://www.youtube.com/watch?v=Ty7knppVo9E&list=PLKnIA16_RmvYNbPMB6ofVLRCcTPUAftdY
    
  4. Linear Algebra Basics

     1. Representing Tabular Data
     2. Vectors
     3. Matrices
     4. Matrix Multiplication
     5. Dot Product
     6. Equation of line in N-dim
     7. Eigen Vector and Eigen Values
     8. Playlist Link - https://www.youtube.com/watch?v=e9h-ZZ_ahRg&list=PLKnIA16_RmvYu0fS_RuIB2eTbJcTFdrAA
    
  5. Basics of Calculus

     1. Big Picture of Derivatives
     2. Maxima and Minima
     3. Playlist link - (first 4 videos only) https://www.youtube.com/playlist?list=PLBE9407EA64E2C318
    
  6. Machine Learning Algorithms

     1. Linear Regression - https://www.youtube.com/watch?v=UZPfbG0jNec&list=PLKnIA16_Rmva-wY_HBh1gTH32ocu2SoTr
     2. Gradient Descent - https://www.youtube.com/watch?v=ORyfPJypKuU&list=PLKnIA16_RmvZvBbJex7T84XYRmor3IPK1
     3. Logistic Regression - https://www.youtube.com/watch?v=XNXzVfItWGY&list=PLKnIA16_Rmvb-ZTsM1QS-tlwmlkeGSnru
     4. Support Vector Machines - https://www.youtube.com/watch?v=ugTxMLjLS8M&list=PLKnIA16_RmvbOIFee-ra7U6jR2oIbCZBL
     5. Naive Bayes - https://www.youtube.com/watch?v=Ty7knppVo9E&list=PLKnIA16_RmvZ67wQaHoBuzXaDAfPz-a6l
     6. K Nearest Neighbors - https://www.youtube.com/watch?v=BYaoDZM1IcU&list=PLKnIA16_RmvZiE-lEdN5RDi18-u-T43zd
     7. Decision Trees - https://www.youtube.com/watch?v=gwgmSSTdiXs&list=PLKnIA16_RmvYGY_n9PP8zN-0LG9MoZRjU
     8. Random Forest - https://www.youtube.com/watch?v=bHK1fE_BUms&list=PLKnIA16_RmvZyqP3WGUo7iVziIIea_1bp
     9. Bagging - https://www.youtube.com/watch?v=LUiBOAy7x6Y&list=PLKnIA16_RmvZ7iKIcJrLjUoFDEeSejRpn
     10. Adaboost - https://www.youtube.com/watch?v=sFKnP0iP0K0&list=PLKnIA16_RmvZxriy68dPZhorB8LXP1PY6
     11. Gradient Boosting - https://www.youtube.com/watch?v=fbKz7N92mhQ&list=PLKnIA16_RmvaMPgWfHnN4MXl3qQ1597Jw
     12. Xgboost - https://www.youtube.com/watch?v=BTLB-ppqBZc&list=PLKnIA16_RmvbXJbBW4zCy4Xbr81GRyaC4
     13. Principle Component Analysis (PCA) - https://www.youtube.com/watch?v=ToGuhynu-No&list=PLKnIA16_RmvYHW62E_lGQa0EFsph2NquD
     14. KMeans Clustering - https://www.youtube.com/watch?v=5shTLzwAdEc&list=PLKnIA16_RmvbA_hYXlRgdCg9bn8ZQK2z9
     15. Heirarchical Clustering - https://www.youtube.com/watch?v=Ka5i9TVUT-E
     16. DBSCAN - https://www.youtube.com/watch?v=RDZUdRSDOok
     17. T-sne - https://www.youtube.com/watch?v=NEaUSP4YerM and https://distill.pub/2016/misread-tsne/
    

3. Learn Practical Concepts (Est. time 6-8 Weeks)

The goal of this level is to get you introduced to the practical side of machine learning. What you learn at this level would really help you out there in the wild.

  1. Data Acquisition (Est. time - 2 Days)

     1. Web Scraping - https://www.youtube.com/watch?v=8NOdgjC1988
             * Project - Create a Pandas dataframe of Indian cuisines from some website using web scraping.
     2. Fetch data from API - https://www.youtube.com/watch?v=roTZJaxjnJc
             * Project - Create a Pandas dataframe of movies from TMDB API.
    
  2. Working with missing values (Est. time - 3 Days)

     1. Complete Case Analysis - https://www.youtube.com/watch?v=aUnNWZorGmk
     2. Handling missing numerical data - https://www.youtube.com/watch?v=mCL2xLBDw8M
     3. Handling missing categorical data - https://www.youtube.com/watch?v=l_Wip8bEDFQ
     4. Missing indicator - https://www.youtube.com/watch?v=Ratcir3p03w
     5. KNN Imputer - https://www.youtube.com/watch?v=-fK-xEev2I8
     6. MICE - https://www.youtube.com/watch?v=a38ehxv3kyk
     7. Kaggle Notebooks and Practice Datasets - https://docs.google.com/document/d/1_9Y6kxNc6QTym2Y2JGEBbnCUbE1qZWLVzVXlT2eX_FQ/edit?usp=sharing
    
  3. Feature Scaling/Normalization (Est. time - 2 Days)

     1. Standarization - https://www.youtube.com/watch?v=1Yw9sC0PNwY
     2. Normalization - https://www.youtube.com/watch?v=eBrGyuA2MIg
    
  4. Feature Encoding Techniques (Est. time - 2 Days)

     1. Ordinal Enconding and Label Encoding - https://www.youtube.com/watch?v=w2GglmYHfmM
     2. One Hot Encoding - https://www.youtube.com/watch?v=U5oCv3JKWKA
     3. Encoding high cardinality categorical features - https://www.kaggle.com/general/16927
     4. Feature hashing - https://datasciencestunt.com/dealing-with-categorical-features-with-high-cardinality-feature-hashing/
    
  5. Feature Transformation(Est. time - 2 Days)

     1. Log Transform - https://www.youtube.com/watch?v=cTjj3LE8E90
     2. Box Cox Transform - https://www.youtube.com/watch?v=lV_Z4HbNAx0
     3. Yeo Johnson Transform - https://www.youtube.com/watch?v=lV_Z4HbNAx0
     4. Discretization - https://www.youtube.com/watch?v=kKWsJGKcMvo
    
  6. Working with Pipelines(Est. time - 2 Days)

    1. Column Transformer - https://www.youtube.com/watch?v=5TVj6iEBR4I
    2. Sklearn Pipelines - https://www.youtube.com/watch?v=xOccYkgRV4Q
    
  7. Handing Time and Date data(Est. time - 1 Day)

    1. Working with time and date data - https://www.youtube.com/watch?v=J73mvgG9fFs
    
  8. Working with Outliers (Est. time - 3 Days)

    1. What are Outliers? - https://www.youtube.com/watch?v=Lln1PKgGr_M
    2. Outlier detection and removal using Z-score method - https://www.youtube.com/watch?v=OnPE-Z8jtqM
    3. Outlier detection and removal using IQR method - https://www.youtube.com/watch?v=Ccv1-W5ilak
    4. Percentile method - https://www.youtube.com/watch?v=bcXA4CqRXvM
    
  9. Feature Construction (Est. time - 1 Day)

    1. Feature Construction - https://www.youtube.com/watch?v=ma-h30PoFms
    
  10. Feature Selection (Est. time - 3 Days)

     1. Feature selection using SelectKBest and Recursive Feature Elimination - https://www.youtube.com/watch?v=xlHk4okO8Ls&t=1s
     2. Chi-squared Feature Selection - https://www.youtube.com/watch?v=fMIwIKLGke0
     3. Backward Feature Elimination - https://www.youtube.com/watch?v=zW1SvA0Z-l4&t=2s
     4. Dropping features using Pearson correlation coefficient - https://www.youtube.com/watch?v=FndwYNcVe0U
     5. Feature Importance using Random Forest - https://www.youtube.com/watch?v=R47JAob1xBY
     6. Feature Selection Advise - https://www.youtube.com/watch?v=YaKMeAlHgqQ
    
  11. Cross Validation (Est. time - 2 Days)

     1. What is cross-validation? - https://www.youtube.com/watch?v=fSytzGwwBVw
     2. Holdout Method - https://www.youtube.com/watch?v=4NnI3SBuww4
     3. K-Fold Cross Validation - https://www.youtube.com/watch?v=gJo0uNL-5Qw
     4. Leave 1 Out Cross Validation - https://www.youtube.com/watch?v=yxqcHWQKkdA
     5. Time series cross validation - https://www.youtube.com/watch?v=g9iO2AwTXyI
    
  12. Modelling - Stacking and Blending (Est. time - 1 Week)

     1. Stacking - https://www.youtube.com/watch?v=O-aDHBGMqXA
     2. Blending - https://www.youtube.com/watch?v=TuIgtitqJho
     3. LightGBM - https://www.youtube.com/watch?v=n_ZMQj09S6w
     4. CatBoost - https://www.youtube.com/watch?v=8o0e-r0B5xQ
    
  13. Model Tuning (Est. time - 4 Days)

     1. GridSearchCV - https://www.youtube.com/watch?v=4Im0CT43QxY
     2. RandomSearchCV - https://www.youtube.com/watch?v=Q5dH5mOQ_ik
     3. Hyperparameter Tuning - https://www.youtube.com/watch?v=355u2bDqB7c
    
  14. Working with imbalanced data (Est. time - 3 Days)

     1. How to handle imbalanced data - https://www.youtube.com/watch?v=JnlM4yLFNuo
     2. Kaggle Notebook - https://www.kaggle.com/kabure/credit-card-fraud-prediction-rf-smote
     3. SMOTE on Quora Dataset - https://www.kaggle.com/theoviel/dealing-with-class-imbalance-with-smote
    
  15. Handling Multicollinearity(Est. time - 2 Days)

     1. What is multicollinearity? - https://www.youtube.com/watch?v=ekuD8JUdL6M
     2. Practical Example - https://www.youtube.com/watch?v=ATH4urDitI8
     3. VIF in Multicollinearity - https://www.youtube.com/watch?v=GMAp_tP1ZQ0
    
  16. Data Leakage - (Est. time - 2 Days)

     1. What is Data Leakage? - https://machinelearningmastery.com/data-leakage-machine-learning/
     2. Practical - Data Leakage on Quora Question Pair Dataset - https://www.kaggle.com/sudalairajkumar/simple-leaky-exploration-notebook-quora
     3. Practical - Data Leakage on Credit Card data - https://www.kaggle.com/dansbecker/data-leakage
    
  17. Serving your model(Est. time - 1 Week)

     1. Pickling your model - https://www.youtube.com/watch?v=yY1FXX_GSco
     2. Flask Tutorial - https://www.youtube.com/watch?v=swHI1H7DVsQ
     3. Streamlit Tutorial - https://www.youtube.com/watch?v=Klqn--Mu2pE
     4. Deploy model on Heroku - https://www.youtube.com/watch?v=YncZ0WwxyzU
     5. Deploy model on AWS - https://www.youtube.com/watch?v=_rwNTY5Mn40
     6. Deploy model to GCP - https://www.youtube.com/watch?v=fw6NMQrYc6w
     7. Deploy model to Azure - https://www.youtube.com/watch?v=qnbJcbjh-3s
     8. ML model to Android App - https://www.youtube.com/watch?v=ax3WyB-_LJY
    
  18. Working with Large Datasets

     1. What is Out of core ML? - https://www.youtube.com/watch?v=9e4nUuq2Hmg
     2. Practical implementation of Out of core ML - https://www.youtube.com/watch?v=sRCuvcdvuzk
     3. NYC Cab Dataset Project - https://vaex.io/blog/ml-impossible-train-a-1-billion-sample-model-in-20-minutes-with-vaex-and-scikit-learn-on-your
    

4. Diving into different domains (Est. time 6-8 Weeks)

This is the level where you would dive into different domains of Machine Learning. Mastering these will make you a true Data Scientist.

  1. SQL (Est. time - 2 Days)

     1. Complete SQL Roadmap - https://www.youtube.com/watch?v=FGBme8dWR_M
     2. SQL learning resources - https://docs.google.com/document/d/1wCALgWubTOvuvlXJ3Eweh7AgJj4sPq2pW92y3viPZbs/edit?usp=sharing
     3. The only video you need to see - https://www.youtube.com/watch?v=nopIGY1zJE0
    
  2. Recommendation Systems

     1. Movie Recommendation System - https://www.youtube.com/watch?v=1xtrIEwY_zY
     2. Book Recommender System - https://www.youtube.com/watch?v=sf93xpq8vaA
     3. Fashion Recommender System - https://www.youtube.com/watch?v=xanJe6e8Xuw
    
  3. Association Rule Learning

     1. Association Rule Mining(Apriori Algorithm) - https://www.youtube.com/watch?v=guVvtZ7ZClw
     2. Eclat Algorithm - https://www.youtube.com/watch?v=oBiq8cMkTCU
     3. Market Basket Analysis - https://www.youtube.com/watch?v=Y7Xkqqfz1UU
    
  4. Anamoly Detection

     1. Anamoly Detection Lecture from Microsoft Research - https://www.youtube.com/watch?v=12Xq9OLdQwQ
     2. Novelty Detection Lecture - https://www.youtube.com/watch?v=vIDcjbpwY3k
    
  5. NLP

     1. Complete NLP Roadmap - https://www.youtube.com/watch?v=PKv_okm1H-k
     2. Complete NLP Playlist - https://www.youtube.com/watch?v=zlUpTlaxAKI&list=PLKnIA16_RmvZo7fp5kkIth6nRTeQQsjfX
     3. NLP Project Ideas - https://www.youtube.com/watch?v=oWJe2T29kAo
     4. Email Spam Classifier Project - https://www.youtube.com/watch?v=YncZ0WwxyzU
     5. Building a Chatbot - https://www.youtube.com/watch?v=Nb21OhaW8GY
    
  6. Time Series(Coming Soon)

  7. Computer Vision(Coming Soon)

5. Pushing it with Projects (Est. time 6-8 Weeks)

The objective of this level is to sharpen your knowledge that you have accumulated in the previous 4 levels

  1. 8 types of Projects for your portfolio - https://www.youtube.com/watch?v=SQHfry4xmdM
  2. How to select a project - https://www.youtube.com/watch?v=kH--k1VKFt4
  3. Car Price Predictor - https://www.youtube.com/watch?v=iRCaMnR_bpA
  4. Banglore House Price Predictor - https://www.youtube.com/watch?v=DVxkI1VmpCk
  5. Posture Detection using ML5.js - https://www.youtube.com/watch?v=kRvIcdLhDtU
  6. Laptop Price Predictor - https://www.youtube.com/watch?v=BgpM2IiCH6k
  7. Which bollywood celebrity are you? - https://www.youtube.com/watch?v=X67rclJcIL0
  8. Finding similar GOT characters - https://www.youtube.com/watch?v=ygGknomFEWY
  9. IPL win probability predictor - https://www.youtube.com/watch?v=ygGknomFEWY
  10. T20 score predictor - https://www.youtube.com/watch?v=ygGknomFEWY
  11. Titanic Survivor Prediction - https://www.youtube.com/watch?v=Bnp94fpxZjY
  12. Diabetes Prediction using ML - https://www.youtube.com/watch?v=xUE7SjVx9bQ
  13. Fake news prediction - https://www.youtube.com/watch?v=nacLBdyG6jE
  14. Loan Status Prediction - https://www.youtube.com/watch?v=XckM1pFgZmg
  15. Gold Price Prediction - https://www.youtube.com/watch?v=9ffkBvh8PTQ
  16. Handwriting Classifier - https://www.youtube.com/watch?v=1B3YIkyPNk0
  17. Flight Fare Prediction - https://www.youtube.com/watch?v=y4EMEpEnElQ
  18. Link for 500+ ML+DL projects - https://github.com/ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code

About

A curated list of Machine learning videos, links, projects and datasets to help you conquer the ML landscape in 6 months

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published