forked from Gogul09/gesture-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
125 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# organize imports | ||
import cv2 | ||
import imutils | ||
import numpy as np | ||
|
||
# global variables | ||
bg = None | ||
|
||
#------------------------------------------------------------------------------- | ||
# Function - To find the running average over the background | ||
#------------------------------------------------------------------------------- | ||
def run_avg(image, aWeight): | ||
global bg | ||
# initialize the background | ||
if bg is None: | ||
bg = image.copy().astype("float") | ||
return | ||
|
||
# compute weighted average, accumulate it and update the background | ||
cv2.accumulateWeighted(image, bg, aWeight) | ||
|
||
#------------------------------------------------------------------------------- | ||
# Function - To segment the region of hand in the image | ||
#------------------------------------------------------------------------------- | ||
def segment(image, threshold=25): | ||
global bg | ||
# find the absolute difference between background and current frame | ||
diff = cv2.absdiff(bg.astype("uint8"), image) | ||
|
||
# threshold the diff image so that we get the foreground | ||
thresholded = cv2.threshold(diff, | ||
threshold, | ||
255, | ||
cv2.THRESH_BINARY)[1] | ||
|
||
# get the contours in the thresholded image | ||
(_, cnts, _) = cv2.findContours(thresholded.copy(), | ||
cv2.RETR_EXTERNAL, | ||
cv2.CHAIN_APPROX_SIMPLE) | ||
|
||
# return None, if no contours detected | ||
if len(cnts) == 0: | ||
return | ||
else: | ||
# based on contour area, get the maximum contour which is the hand | ||
segmented = max(cnts, key=cv2.contourArea) | ||
return (thresholded, segmented) | ||
|
||
#------------------------------------------------------------------------------- | ||
# Main function | ||
#------------------------------------------------------------------------------- | ||
if __name__ == "__main__": | ||
# initialize weight for running average | ||
aWeight = 0.5 | ||
|
||
# get the reference to the webcam | ||
camera = cv2.VideoCapture(0) | ||
|
||
# region of interest (ROI) coordinates | ||
top, right, bottom, left = 10, 350, 225, 590 | ||
|
||
# initialize num of frames | ||
num_frames = 0 | ||
|
||
# keep looping, until interrupted | ||
while(True): | ||
# get the current frame | ||
(grabbed, frame) = camera.read() | ||
|
||
# resize the frame | ||
frame = imutils.resize(frame, width=700) | ||
|
||
# flip the frame so that it is not the mirror view | ||
frame = cv2.flip(frame, 1) | ||
|
||
# clone the frame | ||
clone = frame.copy() | ||
|
||
# get the height and width of the frame | ||
(height, width) = frame.shape[:2] | ||
|
||
# get the ROI | ||
roi = frame[top:bottom, right:left] | ||
|
||
# convert the roi to grayscale and blur it | ||
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) | ||
gray = cv2.GaussianBlur(gray, (7, 7), 0) | ||
|
||
# to get the background, keep looking till a threshold is reached | ||
# so that our running average model gets calibrated | ||
if num_frames < 30: | ||
run_avg(gray, aWeight) | ||
else: | ||
# segment the hand region | ||
hand = segment(gray) | ||
|
||
# check whether hand region is segmented | ||
if hand is not None: | ||
# if yes, unpack the thresholded image and | ||
# segmented region | ||
(thresholded, segmented) = hand | ||
|
||
# draw the segmented region and display the frame | ||
cv2.drawContours(clone, [segmented + (right, top)], -1, (0, 0, 255)) | ||
cv2.imshow("Thesholded", thresholded) | ||
|
||
# draw the segmented hand | ||
cv2.rectangle(clone, (left, top), (right, bottom), (0,255,0), 2) | ||
|
||
# increment the number of frames | ||
num_frames += 1 | ||
|
||
# display the frame with segmented hand | ||
cv2.imshow("Video Feed", clone) | ||
|
||
# observe the keypress by the user | ||
keypress = cv2.waitKey(1) & 0xFF | ||
|
||
# if the user pressed "q", then stop looping | ||
if keypress == ord("q"): | ||
break | ||
|
||
# free up memory | ||
camera.release() | ||
cv2.destroyAllWindows() |