Skip to content

Populustremuloides/betse_learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BETSE Gymnasium Environment and Koopman Operator Learning

Project Overview

This project integrates the BETSE simulation engine with Gymnasium to enable reinforcement learning and Koopman operator learning for controlling bioelectric gradients in a 7-cell system.

File Structure

  • gym_betse/: Contains the Gymnasium environment, agents, and utilities.
  • koopman/: Contains the Koopman operator learning framework using PyTorch.
  • train.py: Script for training RL agents.
  • train_koopman.py: Script for training the Koopman operator model.

Getting Started

  1. Install the required packages:

    pip install -e gym_betse/
    
  2. Run the training script for RL agents:

    python gym_betse/train.py
    
  3. Run the training script for the Koopman operator model:

    python koopman/train_koopman.py
    

Requirements

  • Python 3.7+
  • PyTorch
  • Gymnasium
  • BETSE
  • h5py
  • numpy

Authors (in alphabetical order)

  • Akriti Adhikari
  • Matthew Bailey
  • Brian Brown
  • Jonah Checkets
  • Charlie Clark
  • Caleb Crandal
  • Andrew Criddle
  • Jacob DeGraw

License

This project is licensed under the MIT License.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages